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1.0 Overview 
The U.S. Environmental Protection Agency (EPA) Benchmark Dose Software (BMDS) 
was developed as a tool to facilitate the application of benchmark dose (BMD) methods 
to EPA hazardous pollutant risk assessments. This user guide provides instruction on 
how to use the BMDS, but is not intended to address or replace EPA BMD guidance. 
However, every attempt has been made to make this software consistent with EPA 
guidance, including the Risk Assessment Forum (RAF) Benchmark Dose Technical 
Guidance Document (U.S. EPA, 2012). 

1.1 History of BMDS Development 
Research into model development for BMDS started in 1995 and the first BMDS 
prototype was internally reviewed by EPA in 1997. After external and public reviews in 
1998-1999, and extensive Quality Assurance testing in 1999-2000, the first public version 
of BMDS, version 1.2, was released in April 2000.  

A complete history of the versions of BMDS released by EPA is contained in the Version 
History appendix. The models contained in the current version of BMDS are listed in 
Section 9.0. “Model Descriptions.” on page 40. 

1.2 How EPA Uses BMD Methods 
EPA uses BMD methods to derive risk estimates such as reference doses (RfDs), 
reference concentrations (RfCs), and Cancer Slope Factors (CSF), which are used along 
with other scientific information to set standards for human health effects.  

Prior to the availability of tools such as BMDS, noncancer risk assessment benchmarks 
such as RfDs and RfCs were determined from no-observed-adverse-effect levels 
(NOAELs), which represent the highest experimental dose for which no adverse health 
effects have been documented.  

However, using the NOAEL in determining RfDs and RfCs has long been recognized as 
having limitations: 

• It is limited to one of the doses in the study and is dependent on study design 
• It does not account for variability in the estimate of the dose-response 
• It does not account for the slope of the dose-response curve 
• It cannot be applied when there is no NOAEL, except through the application of an 

uncertainty factor (Kimmel and Gaylor, 1988; Crump, 1984).  

A goal of the BMD approach is to define a starting point of departure (POD) for the 
computation of a reference value (RfD or RfC) or cancer slope factor (CSF) that is more 
independent of study design. The EPA Risk Assessment Forum has published technical 
guidance for the application of the BMD approach in cancer and non-cancer dose-
response assessments (U.S. EPA, 2012). 

Using BMD methods involve fitting mathematical models to dose-response data and 
using the different results to select a BMD that is associated with a predetermined 

https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://www.epa.gov/risk/benchmark-dose-technical-guidance


 Benchmark Dose Software (BMDS) Version 3.0 
User Guide 

Page 8 of 79 

benchmark response (BMR), such as a 10% increase in the incidence of a particular 
lesion or a 10% decrease in body weight gain.  

BMDS facilitates these operations by providing simple data-management tools and an 
easy-to-use interface to run multiple models on the same dose-response dataset. Results 
from all models include model run options chosen by the user, goodness-of-fit 
information, the BMD, and the estimate of the lower-bound confidence limit on the BMD 
(BMDL). Model results are presented as textual and graphical outputs that can be printed 
or saved and incorporated into other documents. 

1.3 Future of BMDS 
EPA plans to continually improve and expand the BMDS system. Plans include 
developing an online version of BMDS that will be integrated with the EPA Health & 
Environmental Research Online (HERO) database and Health Assessment Workspace 
Collaborative (HAWC) website, adding covariate analysis tools and Bayesian models and 
model averaging methods for continuous response data to further alleviate issues and 
uncertainties associated with data selection, bounding frequentist model parameters, and 
assisting the user with selecting a “best” model.  

Use the BMDS web page as your most up-to-date source of information and updates 
pertaining to the BMDS. The entire BMDS system or model updates can be downloaded 
from the web site. The source code files for the models used in the BMDS system are 
also available via the BMDS web site to reviewers and programmers who might be 
interested in performing an in-depth analysis of the model algorithms and features.  

We welcome and encourage your comments on the BMDS software. Please provide 
comments, recommendations, suggested revisions, or corrections through our Help Desk 
Form. 

https://www.epa.gov/bmds/
https://bmds.epa.gov/eticket/
https://bmds.epa.gov/eticket/
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2.0 What’s New in BMDS 3.0 
BMDS 3.0 is a major re-design of BMDS that contains substantial model code and 
interface enhancements that reflect nearly two decades of experience and feedback on 
the needs of risk assessors with respect to benchmark dose modeling.  

New Bayesian dichotomous models and a Bayesian dichotomous model averaging 
feature have been added. Pre-existing dichotomous and continuous models have been 
upgraded with new features and recoded to stabilize and improve performance.  

2.1 Interface Enhancements 

2.1.1 Analysis Workbook 

Datasets, modeling and reporting options for an analysis are entered in the BMDS 3.0 
Analysis Workbook. Users can specify modeling options from intuitive forms and picklists. 
All calculations are performed within the Analysis Workbook.  

The Analysis Workbook is designed to facilitate performing and tracking dose-response 
analyses of multiple dichotomous, combined tumor, nested dichotomous, and continuous 
response datasets. Depending on the needs of the risk assessment, users can focus a 
BMDS 3.0 analysis on datasets associated by: 

• study (e.g., for chemicals with a large database of studies) 
• chemical (e.g., for chemicals that are not well-studied) 
• health outcome (e.g., for chemicals with health outcomes that have been assessed in 

multiple studies and/or by multiple response measures) 

2.1.2 Results Workbook 

All datasets, modeling and reporting options entered in the BMDS 3.0 Analysis Workbook 
can be saved and retrieved at any time prior to or after modeling.  

When modeling is performed, all model results are recorded in a separate Results 
Workbook for each dataset analyzed.  

All the options used in the analysis are saved in each Results Workbook such that the 
analysis can be re-initiated in the BMDS 3.0 Analysis Workbook from the Results 
Workbook (e.g., to rerun the analysis using different options).  

2.2 New Model Additions 
New to the BMDS model suite are Bayesian versions of all traditional frequentist 
dichotomous models and a Bayesian model averaging feature (currently only available 
for dichotomous data).  

Details of the new Bayesian models and modeling averaging feature are provided in 
Section 9.6, “Bayesian Dichotomous Model Descriptions,” on page 54.  
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2.3 Upgrades to Pre-Existing Models  
BMDS continuous models have been upgraded to include a “Hybrid” modeling capability 
and Lognormal response options. For more details, refer to Section 5.2, “Continuous 
Model Options,” on page 19 and Section 9.4, “Frequentist Continuous Model 
Descriptions,” on page 42. 

Also, all pre-existing models have been re-coded to facilitate their maintenance and 
improve their performance in terms of stability, accuracy, reliability, and speed.  

Note BMDS 3.0 handles Akaike Information Criterion (AIC) calculations somewhat 
differently from BMDS 2.x to facilitate comparing models with different likelihoods 
(i.e., normal vs. lognormal). For more details, refer to Section 7.3, “AIC for 
Continuous Models,” on page 26. 

2.4 Backwards-Compatibility  
BMDS 3.0 retains backwards compatibility with BMDS 2.7 and BMDS Wizard 1.11. For 
experienced users, BMDS 3.0 resembles the pre-existing BMDS Wizard in these ways: 

• Excel-based 
• Enables users to see and specify modeling options in a single worksheet 
• Includes auto-selection features for identifying the “best” results in accordance with 

EPA recommendations or user-defined logic 
• Documents all inputs and outputs in a single results workbook for each dataset 

modeled 
• Provides flexible print options for displaying results in Microsoft Word tables 

formatted in a manner suitable for presentation in a risk assessment 

2.5 Models Not Included in BMDS 3.0 
BMDS 3.0 contains all the models and features that were available in BMDS 2.7 and 
BMDS Wizard 1.11 except for: 

• Dichotomous background dose models 
• Rai and Van Ryzin nested dichotomous models 
• ToxicoDiffusion model 
• Ten Berge model 

These models are not being maintained or supported by EPA at this time. 

However, these models can be accessed in BMDS 2.7, which is available from the BMDS 
website as an archive version of BMDS.  

The Ten Berge model is superseded by the latest version of EPA’s categorical regression 
software (CatReg), which has the same functionality but with added features and options. 

https://www.epa.gov/node/83971
https://www.epa.gov/node/83971
https://www.epa.gov/bmds/catreg
https://www.epa.gov/bmds/catreg
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3.0 Setting Up BMDS 3.0 

3.1 System Requirements 
• BMDS 3.0 is distributed as a .zip file on the BMDS website download page, which 

can be unzipped to any folder where the user has read/write privileges (Administrator 
privileges are not required). 

• BMDS 3.0 requires Microsoft Excel 2016 or later with macros enabled (visit the 
Microsoft support site for information on enabling Excel macros). 

Note  Check the BMDS website periodically for updates to the software or help manual.  

3.2 Creating a BMDS Desktop Icon 
You may find it more convenient to run BMDS from a desktop shortcut icon. To do so: 

1. Delete any older BMDS shortcut icons on your desktop. 
2. In Windows Explorer, navigate to the newly installed BMDS application folder. 
3. Right-click the BMDSxxx.xlsm file (where “xxx” denotes the current BMDS version 

number). A context menu appears. 
4. Click Send To. A submenu appears. 
5. Click “Desktop (Create Shortcut)”. Windows creates a shortcut to the file on your 

desktop. 

3.3 Uninstalling Previous Versions of BMDS 
It is not necessary to uninstall previous versions of BMDS to install and run BMDS 3.0. 

https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-30-download
https://support.office.com/en-us/article/enable-or-disable-macros-in-office-files-12b036fd-d140-4e74-b45e-16fed1a7e5c6
https://www.epa.gov/bmds
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4.0 Tutorial: Analyzing Multiple Datasets in BMDS 3.0 
BMDS 3.0 has been designed to facilitate the process of analyzing, recording, and 
reporting dose-response analyses in a manner that is typically necessary and consistent 
with EPA recommendations and guidelines for the development of an EPA chemical risk 
assessment.  

Once a dataset(s) has been entered and modeling options defined the BMDS 3.0 
analysis can be saved and recalled at any time. 

To perform and save a BMDS analysis a user must: 

1. Document the analysis 
2. Add datasets 
3. Select and save modeling options 
4. Run the models, review the results, and prepare a summary report (if desired) 

The following sections provide a simplified tutorial that overviews each step of the 
process. The tutorial also references more detailed explanations located elsewhere in 
this documentation. 

4.1 Step 1: Analysis Documentation 
The first step in performing an analysis is to identify a directory where you will store your 
Results Workbooks (dataset-specific modeling results) and Word Report files (created 
from dataset-specific modeling results). This is done in the Analysis Workbook of BMDS.  

Analysis specifications can be saved as either: 

• Save Analysis Without Running. If this button is clicked, a Save Workbook with 
no results will be created, with a name corresponding to the user-specified (or 
default) “Analysis Name” entered on the “Main” worksheet of the Analysis 
Workbook, and saved to the user-specified output directory. 

• Run Analysis. If this button is clicked after all steps of an analysis are 
completed, dataset-specific Results Workbook and Word Report files with names 
corresponding to the dataset names provided on the “Data” worksheet (Step 2) 
will be automatically generated with user-specified modeling options (Step 3) and 
saved to the user-specified output directory.  

All Analysis Workbook specifications are saved in the Save Workbook and Results 
Workbook files so their corresponding Analysis Workbook can be re-generated. When 
the Load Analysis button is selected from within a Save Workbook and the Results 
Workbook file, the Analysis Workbook will be re-generated with the saved specifications, 
including all modeling options and datasets. 

Note When an Analysis Workbook is re-generated, all options and datasets in an open 
Analysis Workbook will be overwritten. 

You can also provide an Analysis Description in the “Main” worksheet of the Analysis 
Workbook. While not a required step, such documentation is useful for analyses that you 
want to save for future use or consideration.  

As stated in Section 2.1.1. “Analysis Workbook.” on page 9, BMDS 3.0 has been 
designed such that the saved “analysis” can be a collection of dose-response datasets 
from a single study, all dose-response datasets available for a chemical (e.g., for 
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chemicals that are not well-studied), or all dose-response datasets related to a particular 
health outcome (e.g., multiple measures of cardiovascular effects). 

4.2 Step 2: Add Datasets 
After entering the analysis documentation information in the “Main” tab, the dose‐
response data should be entered in the “Data” worksheet of BMDS.  

The user can add multiple datasets associated with four response types: 

• summarized continuous (e.g., mean and SD) 
• individual continuous (e.g., dose and response for each test subject) 
• dichotomous (e.g., lesion incidence)  
• nested dichotomous (e.g., developmental study) responses.  

In each case, dose-response data can be entered as integers or integers with decimals 
(e.g., fractions).  

To insert new datasets, the user must choose a response type and identify the number of 
rows required. 

To paste data that was copied from a table or spreadsheet in another program (e.g., a 
prior version of BMDS), you may need to right-click on the destination cell and select 
“Paste Special” from the Excel context menu. An import feature that will allow users to 
import datasets directly from .dax files created by prior BMDS versions will be added in a 
future version. 

Enter a unique name for each dataset. This name will be used by BMDS to reference the 
dataset on the “Main” worksheet (where users can select datasets to include in a 
modeling analysis) and to name all Result Workbook and Word Report files generated 
from modeling the dataset. The user can also add more detailed notes to describe the 
dataset and these notes can be displayed in the Results Workbook and Word Report file. 

4.2.1 For Dichotomous Response Data 

The default column headers are “Dose,” “N” and “Incidence” (grey row), but for reporting 
purposes the user can enter replacement terms (blue row) such as “mg/kg-day,” 
“Subjects” and “Cases.”  

4.2.2 For Continuous Response Data 

For summarized continuous response data, the default column headers are “Dose,” “N,” 
“Mean” and “Std. Dev.” (grey row). 

For individual continuous response data, the default column headers are “Dose,” 
“Response.”  

Again, for reporting purposes the user can enter replacement terms (blue row). The 
BMDS “Data” worksheet offers a tool for converting standard errors to the required 
standard deviation metric.  

For continuous response data, the user will be given the choice (on the “Main” 
worksheet) to either allow BMDS to choose the adverse direction based on the dose-
response trend, or manually identify the dose-response direction as “Up” or “Down.” This 
will impact the derivation of the benchmark response (BMR) for which the benchmark 
dose (BMD) is estimated. 
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4.2.3 For Nested Dichotomous Data 

The default column headers are “Dose,” “Litter Size,” “Incidence” and “Litter Specific 
Covariate” (LSC) (grey row). Again, for reporting purposes the user can enter their own 
replacement terms (blue row).  

There must be data in the LSC row even if the modeling options do not call for the use of 
LSC. 

4.3 Step 3: Select and Save Modeling Options  
All models and modeling options available for use in an analysis can be selected in the 
“Main” worksheet of BMDS. Options can be saved and reloaded at any time before or 
after running an analysis. An analysis can involve the use of any or all of four Model 
Types: 

• Continuous 
• Dichotomous 
• Dichotomous – Multi-tumor  
• Dichotomous – Nested 

Each model type offers a different set of models and/or modeling options. For more 
details, refer to Section 5.0, “Modeling Options,” on page 19 and Section 9.0, “Model 
Descriptions,” on page 40. 

As in previous versions of BMDS, users can choose to run multiple models in an 
analysis. However, unlike previous versions of BMDS, BMDS 3.0 allows users to run the 
selected models against multiple, user-defined modeling “Option Sets” and multiple 
datasets. The BMDS 3.0 “Main” worksheet lists the datasets entered in the “Data” 
worksheet, enabling the user to choose datasets of the appropriate Model Type to 
analyze using the selected Models and Option Sets. The results for each Model-Option 
Set combination are recorded in separate worksheets within dataset-specific Results 
Workbooks. 

4.3.1 Continuous Response Models and Options 

All the traditional frequentist models and options that were available for analyzing 
continuous response data in previous versions of BMDS are available in BMDS 3.0 
(Bayesian models and Bayesian model averaging will be available for continuous 
responses in a future version of BMDS).  

Also, users are now able to use the Hybrid continuous modeling method and the 
lognormal response distribution assumption (previously only available for Exponential 
models) for all continuous models.  

As in previous versions of BMDS, the user can choose to run the Hill, Polynomial, and 
Power models restricted or unrestricted; the Linear model is not restricted and the 
Exponential models can only be run restricted.  

In the “Main” worksheet of the BMDS 3.0 Analysis Workbook, the user can define 
multiple Option Sets to apply to multiple user-selected models and multiple user-selected 
datasets in a single “batch” process. The adverse direction of each dataset can be 
manually set to “Up” (increasing with dose) or “Down” (decreasing with dose) or “Auto-
detect” via trend testing (default).  

Continuous model Option Sets are user-defined with respect to:  
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• BMR Type: Standard Deviation, Relative Deviation, Absolute Deviation, Point, Hybrid 
– Extra Risk 

• BMRF: BMR factor 
• Tail Probability: Cut-off for defining adversity; only applicable to Hybrid extra risk 

model 
• Confidence Level: fraction between 0 and 1; 0.95 is recommended by EPA (2012) 
• Distribution: Normal or Log-normal response distribution  
• Variance: Constant or Non-constant 
• Polynomial Restrictions: Beta parameter restriction; Automatic (depends on detected 

or specific adverse direction), Non-negative or Non-positive 
• Background: Not currently specifiable for continuous models 

For more details on the continuous models and relevant options, refer to: 

• Section 5.2. “Continuous Model Options.” on page 19 
• Section 9.4, “Frequentist Continuous Model Descriptions,” on page 42 

4.3.2 Dichotomous Response Models and Options 

BMDS 3.0 offers the traditional frequentist dichotomous response models available in 
previous versions of BMDS plus Bayesian versions of each model, as well as a Bayesian 
model averaging feature.  

Most frequentist models can be run restricted or unrestricted. The EPA default 
recommendation for initial runs is to restrict the Gamma, Log-Logistic, Multistage and 
Weibull models and un-restrict the Log-Probit and Dichotomous Hill model; the Logistic, 
Probit and Quantal Linear models are not restricted.  

Dichotomous model Option Sets are user-defined with respect to: 

• BMR Type: Extra Risk or Added Risk 
• BMR: a fraction between 0 and 1; EPA standard is 0.1 
• Confidence Level: fraction between 0 and 1; 0.95 is recommended by EPA (2012) 
• Background: Estimated, Zero or User-Specified; usually estimated unless strong 

evidence for zero or specific value  

For more details on the dichotomous models and relevant options, refer to: 

• Section 5.1. “Dichotomous Model Options.” on page 19 
• Section 9.5. “Frequentist Dichotomous Model Descriptions.” on page 48 
• Section 9.6. “Bayesian Dichotomous Model Descriptions.” on page 54 

4.3.3 Dichotomous—Multi-tumor Models and Options 

As in previous versions of BMDS, BMDS 3.0 allows users to run the EPA’s Multi-tumor 
(MS_Combo) model to determine the BMD, BMDL and BMDU that is associated with a 
benchmark response (BMR) for the risk of experiencing any combination of the multiple 
tumor types.  

However, unlike previous versions of BMDS, BMDS 3.0 provides users with the option to 
manually select or allow BMDS to “Auto-select” the degree of Multistage model to apply 
to a dataset. The auto-selection process follows the most recent EPA technical guidance 
for selecting the Multistage model degree for the analysis of cancer datasets, which 
differs from the model selection process described by EPA (2012) for other modeling 
scenarios.  

https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
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Dichotomous model Option Sets are user-defined with respect to: 

• BMR Type: Extra Risk or Added Risk 
• BMR: a fraction between 0 and 1; EPA standard is 0.1 
• Confidence Level: fraction between 0 and 1; 0.95 is recommended by EPA (2012) 
• Background (dataset-specific): Estimated, Zero or User-Specified; usually estimated 

unless strong evidence for zero or specific value 

For more details on the dichotomous multi-tumor models and relevant options, refer to: 

• Section 5.1. “Dichotomous Model Options.” on page 19 
• Section 6.0. “Multiple Tumor Analysis.” on page 23 
• Section 9.8. “Multi-tumor (MS_Combo) Model Description.” on page 63 

4.3.4 Dichotomous—Nested Models and Options 

BMDS 3.0 allows users to run the EPA’s Nested Logistic nested dichotomous model.  

Note The NCTR (National Center for Toxicological Research) nested dichotomous 
model is not in the BMDS 3.0 release. It will be included in a future release. 

EPA no longer supports the Rai and Van Ryzin model that was available in previous 
versions of BMDS.  

Unlike previous versions of BMDS, BMDS 3.0 does not require the user to specify the 
model form, but rather automatically runs all forms of the available nested models (i.e., all 
combinations of “Use Litter Specific Covariate.” “Do Not Use Litter Specific Covariate,” 
“Estimate Intralitter Correlations” and “Assume Intralitter Correlations of Zero”). 

Dichotomous nested model Option Sets are user-defined with respect to: 

• BMR Type: Extra Risk or Added Risk 
• BMR: a fraction between 0 and 1; EPA standard is 0.1  
• Confidence Level: fraction between 0 and 1; 0.95 is recommended by EPA (2012) 
• Litter Specific Covariate: Overall or Control Group Mean  
• Background (dataset-specific): Estimated, Zero or User-Specified; usually estimated 

unless strong evidence for zero or specific value 
For more details on dichotomous nested models and their options, refer to  

• Section 5.3. “Nested Model Options.” on page 22 
• Section 9.7. “Frequentist Nested Model Descriptions.” on page 58 

4.4 Step 4: Run Models, Review Results, and Prepare 
Summary Report(s) 
When modeling is performed, the results are recorded in separate Results Workbooks for 
each dataset analyzed. All of the options used in the analysis are saved in each Results 
Workbook such that the analysis can be re-initiated in the BMDS 3.0 Analysis Workbook 
from the Results Workbook (e.g., to rerun the analysis using different options).  

In the Report Options worksheet of the BMDS 3.0 Analysis Workbook, users can select 
modeling inputs and results to report for each model type, “Export Options,” and “Word 
Report Options.”  

• Export Options selected affect both the Result Workbook and Word Report files that 
are generated from an analysis.  
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• Word Report Options are applied for the generation of tabular documentation of 
modeling results in Microsoft Word.  

• Export Options (“User Inputs” and “Analysis Results”) are set separately for each of 
the different model/analysis types.  

Because the Word report may take a few minutes to compile, we recommend running the 
Word Report Options after you have verified your analysis results. When you are 
satisfied with the analysis results, then re-run with the Word Report Option checked.  

Users familiar with the previous BMDS Wizard will note that BMDS 3.0 uses a similar 
approach to analyzing modeling results and making automatic recommendations 
regarding model selection that are consistent with the 2012 EPA Benchmark Dose 
Technical Guidance (U.S. EPA, 2012). These criteria can be altered in the “Logic” 
worksheet of the BMDS 3.0 Analysis Workbook, as presented below in Figure 1. Decision 
logic can be turned on or off, and specific criteria can be enabled or disabled for different 
dataset types. Notice that the logic depends on what type of data is being analyzed 
(continuous, dichotomous, nested). 

Figure 1. BMDS 3.0 “Logic” worksheet with EPA default recommendation decision logic. 

 

Based on the decision logic entered by the user as described above, BMDS will attempt 
to select a “recommended” model. A user must ultimately select a model and may 
choose to disagree with the BMDS auto-determination. BMDS 3.0 automatically 
generates suggested text for the “BMDS Recommendation” and “BMDS 
Recommendation Notes” columns of the Results Workbook summary tables and the 
Word Report File tables. While some reformatting is allowed in the Results Workbook 
(e.g., row heights, column widths, and the size, design, and position of plots), the text and 
numeric results cannot be modified. However, the Word Report files can be modified 
extensively, and the user is encouraged to take advantage of this flexibility to change 
and/or expand on the table headers and the justification provided for why a model was 
selected.  

BMDS 3.0 places each model into one of three different bins: 

• Viable—highest quality model, no serious deficiencies found based on user-defined 
logic but may contain warnings 

• Questionable—serious deficiencies with model based on user-defined decision logic 
• Unusable—required outputs such as BMD or BMDL are not estimated 

https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://www.epa.gov/risk/benchmark-dose-technical-guidance
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After all models with the same BMR have been placed into one of three different quality 
bins, a model is recommended from the highest quality bin based on BMDL or AIC 
criteria defined in the 2012 EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012). 
The default setting for “sufficiently close” BMDLs is a 3-fold range. Figure 2 reflects the 
BMDS 3.0 model recommendation logic using the default assumptions shown in Figure 1. 

Figure 2. Flow chart of BMDS 3.0 model recommendation logic using EPA default logic assumptions. 
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5.0 Modeling Options 

5.1 Dichotomous Model Options 
Risk Type 
Choices are “Extra” (Default) or “Added.”  

Added risk is the additional proportion of total animals that respond in the presence of the 
dose, or the predicted probability of response at dose 𝑑𝑑, 𝑃𝑃(𝑑𝑑), minus the predicted 
probability of response in the absence of exposure, 𝑃𝑃(0): 𝑃𝑃(𝑑𝑑) –  𝑃𝑃(0) 

Extra risk is the additional risk divided by the predicted proportion of animals that will not 
respond in the absence of exposure, 1 −  𝑃𝑃(0): 𝑃𝑃(𝑑𝑑) – 𝑃𝑃(0)

1−𝑃𝑃(0)
 The BMRF for all dichotomous 

models must be between 0 and 1 (not inclusive). 

5.1.1 Note about BMR and Graphs 

The response associated with the BMR that is displayed in the graphical model output 
will only be the same as the BMR when 𝑃𝑃(0)  =  0. This is because to obtain the actual 
response value one must solve for 𝑃𝑃(𝑑𝑑) in the equation for added or extra risk discussed 
above. 

5.2 Continuous Model Options 
Constant Variance 
When selected (default), the model assumes a constant variance across all dose groups. 
If not selected, then the model assumes the variance can be different for each dose 
group, and that the variance varies as a power function of the mean response. For more 
details, refer to Section 9.4, “Frequentist Continuous Model Descriptions,” on page 42. 

Adverse Direction 
Choices for the Adverse Direction option are “Automatic” (default), “Up,” or “Down.” This 
option refers to whether adversity increases as the dose-response curve rises “up” or 
falls “down.” If automatic is chosen, the software chooses the adverse direction based on 
the shape of the dose-response curve. Manually choose the adverse direction if you 
know the direction of adversity for the endpoint being studied. This selection only impacts 
how the user-designated BMR is used in conjunction with model results to obtain the 
BMD. 

BMR Type 
The BMR type is the method of choice for defining the response level used to derive the 
benchmark dose (BMD). The choices allowed are “Rel. Dev.” (default), “Abs. Dev.,” “Std. 
Dev.,” “Point,” and “Hybrid” (Hill model only).  

• Rel. Dev. (Relative Deviation) means the response associated with the BMR will be 
the background estimate plus or minus (depending on the Adverse Direction) the 
product of the background estimate times the BMRF entered by the user.  

• Abs. Dev. (Absolute Deviation) means the response associated with the BMR will 
be the background estimate plus or minus the BMRF.  
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• Std. Dev. (Standard Deviation) means the response associated with the BMR will 
be the background estimate plus or minus the product of the BMRF times the 
standard deviation for the control group data.  

• Point means the response associated with the BMR will be the BMRF value itself.  
• Hybrid Defines the BMD through the adverse probability of response. Here the 

BMRF represents the increased probability of an adverse response given the BMD. 
 

𝑅𝑅𝑅𝑅𝑅𝑅.𝐷𝐷𝐷𝐷𝐷𝐷.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝜇𝜇(0)  + (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗  𝜇𝜇(0)) (Default) 

𝐴𝐴𝐴𝐴𝐴𝐴.𝐷𝐷𝐷𝐷𝐷𝐷.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝜇𝜇(0)  +  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

𝑆𝑆𝑆𝑆𝑆𝑆.𝐷𝐷𝐷𝐷𝐷𝐷.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝜇𝜇(0)  +  (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

Hybrid 

Solution to “up”: 𝐵𝐵𝑀𝑀𝑅𝑅𝑅𝑅 =  Pr�𝑋𝑋 > 𝑋𝑋0�𝐷𝐷�−Pr�𝑋𝑋 > 𝑋𝑋0�0�
1 − Pr�𝑋𝑋 > 𝑋𝑋0�0�

 

Solution to “down”: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = Pr�𝑋𝑋 < 𝑋𝑋0�𝐷𝐷�−Pr�𝑋𝑋 < 𝑋𝑋0�0�
1 − Pr�𝑋𝑋 < 𝑋𝑋0�0�

 

where Pr(𝑋𝑋 < 𝑋𝑋0 | 0) is the background probability that defines adverse response. 

Note When response data is lognormally distributed, the BMR Types acquire different 
meanings. As of BMDS 3.0, all continuous exponential models can assume 
lognormal distribution. 

5.2.1 Lognormal Response Option 

When modeling continuous response data, the standard assumption for the BMDS 
continuous models is that the underlying distributions (one for each dose group) are 
Normal, with a mean given by the dose-response model and a variance as specified by 
the user (constant or a function of the mean response). An alternative assumption is that 
the responses are Lognormally distributed.  

In BMDS 3.0 all continuous models allow the user to choose between Normal and 
Lognormal response distribution assumptions (unlike prior versions of BMDS, which only 
allowed this for Exponential models). If the user has access to the individual response 
data, those data can be log-transformed prior to analysis but, as discussed below, this is 
not a recommended approach. If the user suspects that the responses are Lognormally 
distributed, the recommended approach is to model the untransformed data assuming 
the underlying distribution is Lognormal with median values defined by the dose-
response function and a constant log-scale variance, corresponding to an assumption of 
a constant coefficient of variation. For more details, refer to Section 5.2.2, “Definition of 
BMR Types under Lognormal Distribution Assumption,” on page 21. 

BMDS 3.0 provides an exact maximum-likelihood estimation (MLE) solution when data 
are assumed to be lognormally distributed and individual response data are available. 
When the data are assumed to be lognormally distributed and the data are presented in 
terms of group-specific means and standard deviations, then the exact MLE solution 
cannot be obtained. In that case, the “Solution” is “Approximate” and the means and 
standard deviations of the log-transformed data are estimated as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  −  𝑙𝑙𝑙𝑙(1 +
� 𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� × 2

2
) 
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𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑙𝑙𝑙𝑙(1 + �
𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� × 2)  

 

Using log-transformed responses in the analysis is not recommended, for the 
following reasons: 

• If you choose to log-transform the data prior to analysis, then the interpretation of the 
BMD and BMDL estimates would have to be considered carefully (and perhaps in 
consultation with a statistician). Data interpretation when using log-transformed 
responses will not be the same as when using the natural-scale response values. 
Indeed, the models—when “transformed back” to the natural scale—will not 
correspond to any of the standard BMDS models.  
For example, if using the power model on log-transformed responses, the user is 
actually implicitly modeling the medians (on the natural-scale) with the function 
𝑒𝑒(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 which is not a standard BMDS model and whose 
characteristics (e.g., exponential increases in response) may not be those desired by 
the user.  

• Similarly, the interpretation of the BMD will not correspond to simple expressions 
(e.g., if the BMR is set equal to a relative deviation of 10%, that relative deviation will 
be assessed on the log-scale and so will not yield BMD or BMDL estimates that 
correspond to a 10% change in the original mean responses).  

For these reasons, log-transforming the response values is not considered a “best 
practice” and, as stated, should only be applied and interpreted with supporting statistical 
expertise. Therefore, in most cases, the user should use non-transformed values and 
select the lognormal distribution if the data is assumed to be lognormally distributed. 

5.2.2 Definition of BMR Types under Lognormal Distribution Assumption 

The BMDS continuous models allow the user to assume that the response data are 
lognormally distributed, with median values defined by the dose-response function and a 
constant log-scale variance. Under such an assumption the BMR types are defined and 
implemented so that they are calculated by the program to return BMDs as follows 
(where BMRF is the numerical value, specified by the user, indicating the response, or 
change in response, of interest): 

• Relative Deviation: The natural scale median value at the BMD, 𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵), differs 
from the natural scale median at 0 dose, 𝑚𝑚(0), such that |𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵) – 𝑚𝑚(0)|

𝑚𝑚(0)
 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵.  

• Absolute Deviation: The natural scale median value at the BMD, 𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵), differs 
from the natural scale median at 0 dose, 𝑚𝑚(0), such that |𝑚𝑚(𝐵𝐵𝐵𝐵𝐷𝐷) –  𝑚𝑚(0)|  =
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 

• Standard deviation: The log-scale mean at the BMD, 𝑙𝑙𝑙𝑙(𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵)), differs from the 
log-scale mean at 0 dose, 𝑙𝑙𝑙𝑙(𝑚𝑚(0)), such that |ln (𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵)) – ln (𝑚𝑚(0))|

𝜎𝜎(0)
 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, where 

𝜎𝜎(0) is the log-scale standard deviation at 0 dose. Recall that 𝜎𝜎(0)  =  𝑙𝑙𝑙𝑙(𝐺𝐺𝐺𝐺𝐺𝐺(0)). 
This definition allows the user to use BMRF’s typical of an analysis where a normal 
distribution of responses is assumed (e.g., the EPA default of 1 standard deviation) 
and still maintain the logic and rationale for such choices, since the log-transformed 
response values under the lognormal assumption would themselves be normally 
distributed. 

• Point: The natural scale median value at the BMD, 𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵), equals the BMRF, i.e., 
𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵)  =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 
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5.3 Nested Model Options 
Risk Type 
Choices are “Extra” or “Added.” Additional risk is the additional proportion of total animals 
that respond in the presence of the dose, or the probability of response at dose 𝑑𝑑, 𝑃𝑃(𝑑𝑑), 
minus the probability of response in the absence of exposure, 𝑃𝑃(0): 𝑃𝑃(𝑑𝑑) –  𝑃𝑃(0). Extra 
risk is the additional risk divided by the proportion of animals that will not respond in the 
absence of exposure, 1 −  𝑃𝑃(0): 𝑃𝑃(𝑑𝑑) – 𝑃𝑃(0)

1−𝑃𝑃(0)
. Thus, extra and additional risk are equal when 

background rate is zero. 

The following were options in previous versions of BMDS. BMDS 3.0 does not require the 
user to specify these options anymore, but simply runs and provides output for all 
possible option combinations. 

Use a Litter Specific Covariate 
Optionally, enables the user to account for inter-litter variability by using a litter specific 
covariate (LSC). If the box is checked (default), Theta values are estimated. If the box is 
unchecked, the Theta values are set to zero. Do not use LSC if the corresponding metric 
is affected by dose or if its use does not sufficiently improve model fit, as indicated by a 
lower AIC value. 

Fixed LSC Value 
Choices are “Control Group Mean” (default) or “Overall Mean.” See Section 9.7, 
“Frequentist Nested Model Descriptions” on page 58 for an explanation as to why this 
option is necessary, and which choice would be preferred for your given dataset. 
Basically, the Overall Mean should be used under most circumstances. If the Litter 
Specific Covariate differs from dose to dose (without any apparent consistent trend with 
respect to dose), consider using the Control Group Mean. 

Intralitter Correlations 
Provides user with the option to allow the models to attempt to estimate intralitter 
correlations or assume they are zero. If “Estimate Intralitter Correlations” is selected 
(default), all the Phi values are estimated (one for each dose group). If “Assume Intralitter 
Correlations Zero” is chosen, all the Phi values are set to zero. 
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6.0 Multiple Tumor Analysis 

6.1 Assumptions and Results 
The analyses of multiple tumors have the following assumptions and results. 

1. The tumors are statistically independent of one another. Note: Unless there is 
substantial biological evidence to indicate that the tumor types are not independent—
conditional on model parameter values—the approach based on independence is 
considered appropriate. 

2. A multistage model is an appropriate model for each of the tumors separately. The 
individual multistage models fit to the individual tumors need not have the same 
polynomial degree, however. 

3. The user is interested in estimating the risk of getting one or more of the tumors 
being analyzed; the results indicate the BMD and BMDL associated with the user-
defined benchmark response (BMR) level, where the BMD and BMDL are the 
maximum likelihood and lower bound estimates of the dose that is estimated to give 
an extra risk equal to the BMR for the “combination” (getting one or more of the 
tumors). 

In accordance with EPA cancer guidelines, a Multiple Tumor Analysis will always run the 
restricted form of the Multistage model. A new feature in BMDS 3.0 allows users to have 
BMDS “Auto-Select” the appropriate polynomial degree of the Multistage model for each 
tumor dataset. When the “Auto-Select” feature is used, BMDS runs all relevant forms of 
the Multistage model and selects the polynomial degree to use based on the current EPA 
Multistage model selection criteria for tumor analyses. This is the default option in BMDS 
3.0, but the user can also choose to manually set the polynomial degree for each dataset. 
In any case, it is ultimately the user’s responsibility to ensure that the degree of the 
polynomial and other selections for modeling parameters are as desired and appropriate 
for the dataset(s) being analyzed.  

6.2 Obtaining the Combined BMD 
Per EPA cancer guidelines, the Multi-tumor model uses the restricted form of the 
Multistage model. Because of the form of the restricted multistage model, the combined 
BMD is obtained in a relatively straightforward manner from the maximum likelihood 
parameter estimates from the models fit to the individual tumors.  

The combined maximum log-likelihood is the sum of the individual maximized log-
likelihoods (summed over the individual tumor analyses).  

The combined BMD is the dose that is estimated to yield an extra risk of getting one or 
more of the tumors, where the extra risk is equal to the BMR.  

The calculation of the combined BMDL is a more complicated computation based on the 
profile-likelihood approach.  

As such, it gives the lowest value of the dose that satisfies the following conditions:  

• There is a combination of parameters (across all models) for which the value of the 
BMDL gives a combined extra risk equal to the BMR and, using those parameter 
values,  

https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
https://cfpub.epa.gov/ncea/bmds/recordisplay.cfm?deid=308382
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• The combined log-likelihood is greater than or equal to a minimum log-likelihood 
defined by the maximum log-likelihood and the confidence level specified by the user 
(i.e., the parameters that give the desired extra risk when the dose is equal to the 
BMDL give a combined log-likelihood that is “close enough” to the maximum 
combined log-likelihood). 

The fitted model log-likelihoods for continuous endpoints are reported in the Likelihoods 
of Interest (continuous endpoints) tables. 

6.3 Running an Analysis and Viewing Results 
The user should first enter the dichotomous tumor datasets to be analyzed in the Data 
worksheet of BMDS. Then the dichotomous datasets entered in the Data worksheet will 
be available and can be selected for use in a Multi-tumor analysis in the Main worksheet 
of BMDS.  

Once the datasets to be analyzed are selected, the user needs to set dataset-specific 
modeling options for Multistage Degree (“Auto-Select” or specify) and Background 
(“Estimated”, “Zero” or “User-Specified”) and general modeling options for Risk Type 
(“Extra Risk” or “Added Risk”; EPA recommends use of “Extra Risk”), BMR and 
Confidence Level.  

When “Run Analysis” is selected a separate Results Workbook of multi-tumor results is 
created. The workbook will include results for each individual tumor considered 
separately (using the chosen dataset-specific options), and the corresponding estimate of 
the BMD and BMDL for the combined tumor probability for the risk type, BMR and 
confidence levels specified by the user.  

Plots for individual multistage model runs will be shown on the individual model results 
tabs. If the “Auto-Select” feature was used to select the Multistage polynomial degree, the 
user should verify that the resultant model fits are adequate in the desired dose-response 
region. If the user wants to try a different Multistage polynomial degree they can re-run 
the analysis using a specified degree instead of “Auto-Select.” 

6.4 Troubleshooting a Tumor Analysis 
If one or more of the tumors is estimated to have a BMD greater than three times the 
highest dose tested (for that tumor), then the multiple tumor analysis will stop at an 
intermediate point, i.e., after the fitting has been done for the tumor in question and the 
magnitude of that BMD has been determined. No tumors listed below that tumor will be 
analyzed and no combination will be completed.  

It is probably the case that the tumor in question will not add substantially to the 
estimation of a BMD for the combinations of tumors, assuming other tumors have BMDs 
less than three times the highest dose; that is because the magnitude of response for the 
tumor in question has not even reached the benchmark response level for such a high 
exposure and so its individual contribution to the risk of getting one or more of the tumors 
being analyzed will be small in comparison to that for the other tumors. The user might 
attempt a combination that does not include the tumor in question. 
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7.0 Other BMD Analysis Considerations 

7.1 Continuous Response Data with Negative Means 
Data with negative means should only be modeled with a constant variance model.  

It may occasionally be the case that, when modeling transformed data, you will need to 
model negative data. In this case, the transformation used should be a variance-
stabilizing transformation so that a constant-variance model would be appropriate. 

If a standard deviation-based BMR is used to define the BMD calculations, then a 
constant can be added to all the observations (or means) to make the values (means) 
positive. That will not change the standard deviations of the observations and would allow 
you to model the variance. 

7.2 Test for Combining Two Datasets for the Same Endpoint 
At this time, BMDS does not include a formal test for similarity of dose response across 
covariate values (e.g., across class variables like species or sex). EPA’s categorical 
regression software, CatReg, has that capability.  

However, the following procedure can be used in BMDS if you have dose-response data 
for two experiments that you are considering combining (e.g., for the two sexes within a 
species, or two species, etc.). 

1. Choose a single model to consider for both dataset.  
2. Model the two runs separately. For each run, record the following: 

• Maximum log-likelihood for each dataset. Add the numbers from each dataset to 
get the summed log-likelihood.  

• The number of unconstrained parameters for each dataset. Add the numbers 
from each run to get the summed unconstrained parameters. 

3. Combine the data from the two experiments and model them together. Record the 
following: 
• The maximum log-likelihood for the combined dataset. This will be the combined 

log-likelihood. The fitted model log-likelihoods are reported in the Analysis of 
Deviance (dichotomous endpoints) or Likelihoods of Interest (continuous 
endpoints) tables. 

• The number of unconstrained parameters for the combined dataset. This will be 
the combined unconstrained parameters. 

4. Subtract the combined log-likelihood from the summed log-likelihood. Then, multiply 
the difference by 2. 

5. Compare the value from Step 4 to a chi-squared distribution. The degrees of freedom 
for that chi-squared distribution will be the difference between the summed 
unconstrained parameters (Step 2) and the combined unconstrained parameters 
(Step 3). 
 
If the value from Step 4 is in the tail (say, greater than the 95th percentile) of the chi-
squared distribution in question, then reject the null hypothesis that the two sets have 
the same dose-response relationship. If rejection occurs, then infer that it is not 
proper to combine the two datasets. 

https://www.epa.gov/bmds/catreg
https://www.epa.gov/bmds/catreg
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7.3 AIC for Continuous Models 
To facilitate comparing models with different likelihoods (i.e., normal vs. lognormal), the 
log-likelihood for the normal and lognormal distributions are calculated using all 
normalizing constants. This results in different numerical AIC values than those given in 
earlier BMDS versions.  

"Even though the BMDS 3.0 AIC values differ from those in BMDS 2.x versions, if the 
models have the same underlying distribution, then the difference of the AICs will be the 
same as previous versions of BMDS. This assumes that the BMDS 3.0 and BMDS 2.x 
model fits are the same for the two models being compared. The AIC difference may not 
be the same if one or more of the model fits differ between the two versions (e.g., if one 
or more of the 3.0 models provide an improved fit to the data over the corresponding 
BMDS 2.x model). 

However, when comparing models having different parametric distributions, the AIC 
differences will not be the same as previous BMDS versions. For these comparisons, the 
AIC calculated using the BMDS 3.0 software is correct and will result in the proper 
comparison between any two models regardless of underlying distribution.  

A note of caution is required for situations where only the sufficient statistics are 
approximated using the lognormal distribution. In these cases, comparisons between 
models using the normal distribution should not be made using the AIC. 
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8.0 Output from Individual Models 
Dataset-specific Results Workbooks generated by the BMDS 3.0 Analysis Workbook 
contain separate worksheets for each Model-Option Set combination that consist of 
tabular and graphical summaries of the modeling inputs and results.  

The purpose of these worksheets is to provide the user with goodness-of-fit criteria and 
model results to aid in determining the appropriateness of the Model and Option Set to 
the benchmark dose derivation.  

This section describes BMDS model outputs that are common to all model types. 
Succeeding sections describe model-specific outputs.  

8.1 Model Run Documentation (User Input Table) 
The Results Workbook worksheets that are generated for each Model-Options set 
contain a User Input table that gives the user a quick verification of the options they had 
selected for that Model-Options set.  

For instance, when two users may be comparing results and obtained different answers, 
they may consult their respective User Input tables to make sure the settings were the 
same or if they had used the same (or most current) version of the models.  

The User Input tables within the Results Workbook worksheets for each Model-Option 
Set contain the model name and version number, the dataset name, dataset information, 
including user notes, entered by the user on the “Data” worksheet of BMDS, and 
modeling options entered by the user on the “Main” worksheet of BMDS.  

8.2 Benchmark Dose Estimates and Key Fit Statistics 
(Benchmark Dose Table) 
The Benchmark Dose table of the Results Workbook worksheets contains the BMD, 
BMDL, and BMDU estimates, AIC, and the overall goodness of fit test p-value, chi-
square, and degrees of freedom (df) for each Model Option set analyzed.  

For more information on how the BMD, BMDL and BMDU values are derived, refer to 
Sections 9.4.3 and 9.4.4.  

The Akaike’s Information Criterion (AIC) (Akaike, 1973) value given on the BMDS Results 
Workbook worksheets is -2L + 2p, where L is the log-likelihood at the maximum likelihood 
estimates for the parameters, and p is the number of model parameters estimated (and 
not on a restriction boundary). It can be used to compare different types of models which 
use a similar fitting method (for example, least squares or a binomial maximum 
likelihood), as do all dichotomous, continuous and nested model types within BMDS. The 
model with the lowest AIC would be presumed to be the better model under this method. 
Although such methods are not exact, they can provide useful guidance in model 
selection.  

Note BMDS 3.0 handles Akaike Information Criterion (AIC) calculations somewhat 
differently from BMDS 2.x To facilitate comparing models with different 
likelihoods (i.e., normal vs. lognormal). For more details, refer to Section 7.3, 
“AIC for Continuous Models,” on page 26. 
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The overall scaled residual value (see Sections 8.6.2 and Section 8.7.2 for description of 
scaled residual derivation for continuous and dichotomous responses, respectively), and 
it corresponding overall p-value are indications of that “closeness”. If the overall p-value 
is larger than some predetermined critical p-value, then the user may be able to conclude 
that the model is appropriate to model the data. The critical -value used by EPA is 
generally 0.1, but is sometimes relaxed to 0.05 for Multistage model when it is applied to 
cancer data (U.S. EPA, 2012). 

8.3 Model Parameter Estimates 
The model parameter estimates are provided in the Model Parameters table of the 
Model-Option worksheets of the Results Workbook. This table includes both the 
estimates for the true parameter values as well as their estimated standard errors. The 
standard errors are given for two reasons:  

1. If standard errors are extraordinarily high, then the user may suspect that the 
probability function may not have reached a maximum, and they may want to use 
different starting points. There is not a guarantee if these are high that the function 
has not, in fact, been maximized. The user should use this in conjunction with other 
output to reach a decision.  

2. To make inferences about the population parameters themselves. Under certain 
assumptions, the user may be able to formulate tests for the true value of the 
parameter. 

8.4 Graphic Output from Models 
The graphic output plot should display in the Summary and individual Model-Option 
worksheets of the Results Workbook along with the tabular results.  

Figure 3. Results plot 
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• The BMD and BMDL are indicated by the green and yellow vertical lines, 
respectively, and are associated with the user-selected benchmark response (BMR), 
the horizontal grey line.  

• The BMD curve estimated by the model is represented by a blue line.  
• Data points are shown as orange circles with their individual group confidence 

intervals (see the next section on error bar calculations for more information). 
• The graphic display features can be modified using Excel edit features.  

8.5 Plot Error Bar Calculations (Not in BMDS 3.0 Release) 
Error bars will be added to BMDS 3.0 plots in the next BMDS update. 

8.5.1 Continuous Models 

BMDS uses a single error bar plotting routine for all continuous models.  

1. The plotting routine calculates the standard error of the mean (SEM) for each group. 
The routine divides the group-specific observed variance (obs standard deviation 
squared) by the group-specific sample size. 

2. The routine then multiplies the SEM by the Student-T percentiles (2.5th percentile or 
97.5th percentile for the lower and upper bound, respectively) appropriate for the 
group-specific sample size (i.e., having degrees of freedom one less than that 
sample size). The routine adds the products to the observed means to define the 
lower and upper ends of the error bar. 

8.5.2 Dichotomous Models 

The error bars shown on the plots of dichotomous data are derived using a modification 
of the Wilson interval (based on the score statistic) but with a continuity correction 
method (Fleiss et al., 2003). For the upper bound, the calculation finds the proportion, pi, 
such that  

|𝑝𝑝 − 𝑝𝑝𝑖𝑖| −
1

2𝑛𝑛

�𝑝𝑝𝑖𝑖 × (1 − 𝑝𝑝1)
𝑛𝑛

= 𝑧𝑧 

where  

• 𝑝𝑝 is the observed proportion 
• 𝑛𝑛 is the total number in the group in question 
• 𝑧𝑧 = 𝑍𝑍1−𝛼𝛼2

 is the inverse standard normal cumulative distribution function evaluated at 

1 − 𝛼𝛼
2
 

This leads to equations for the lower and upper bounds of: 

• 𝐿𝐿𝐿𝐿 =
�2𝑛𝑛𝑛𝑛+𝑧𝑧2−1�−𝑧𝑧�𝑧𝑧2−(2+ 1𝑛𝑛) + 4𝑝𝑝(𝑛𝑛𝑛𝑛+1)

2(𝑛𝑛+𝑧𝑧2)
 

• 𝑈𝑈𝑈𝑈 =
�2𝑛𝑛𝑛𝑛+𝑧𝑧2+1�+𝑧𝑧�𝑧𝑧2+(2− 1𝑛𝑛) + 4𝑝𝑝(𝑛𝑛𝑛𝑛−1)

2(𝑛𝑛+𝑧𝑧2)
 

where 𝑞𝑞 =  1 − 𝑝𝑝.  
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The error bars shown in BMDS plots use alpha = 0.05 and so represent the 95% 
confidence intervals on the observed proportions (independent of model).  

8.5.3 Nested Models 

The error bars shown for the plots of nested data are calculated in the same way as 
those for dichotomous data. However, a Rao-Scott transformation is applied prior to the 
calculations to express the observations in terms of an “effective” number of affected 
divided by the total number in each group (the format required for the confidence 
intervals of simple dichotomous responses).  

8.6 Outputs Specific to Continuous Models 

8.6.1 Asymptotic Correlation Matrix of Parameter Estimates (Not in 
BMDS 3.0 Release) 

This feature will be added to BMDS 3.0 in the next BMDS update. 
This table in the individual model results provides the user with a matrix of correlation 
estimates between each of the parameters. Again, if these values seem to be high (in this 
case, very close to 1, in absolute value), there may have been a problem in the 
maximization. However, as stated before, high correlation does not confirm that the 
process of maximization did, in fact, fail. 

Note The parameter standard errors and the correlation matrix elements are based on 
a variance-covariance (VCV) matrix obtained by inverting the negative of the 
Hessian matrix (the Fisher-observed information matrix). That matrix is made up 
of second partial derivatives of the log-likelihood, with respect to the model 
parameters. For all the continuous models, the partials are derived using a finite 
difference approximation to those derivatives. 

8.6.2 Table of Data and Estimated Values of Interest 

8.6.2.1 Goodness of Fit Table 

This table in the individual model results gives a listing of the data as well as estimated 
means and standard deviations from the model. This is a good place for the user to look, 
along with the Tests of Fit and Maximum Likelihood below, to judge the appropriateness 
of the model. If a model fits well, the observed and estimated means should be relatively 
close. The scaled residual values printed in the final column of the table are defined as 
follows: 

(Obs.Mean − Predicted Mean)
𝑆𝑆𝑆𝑆

, 

where the Predicted Mean is from the model and SE equals the estimated standard 
deviation (square root of the estimated variance) divided by the square root of the sample 
size. 

The overall model should be called into question if the scaled residual value for any 
individual dose group, particularly the control group or a dose group close to the BMD 
estimate, is greater than 2 or less than -2. 
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8.6.2.2 Likelihoods of Interest Table 

BMDS uses likelihood theory to estimate function parameters and ultimately to make 
inferences based on risk assessment data. Maximum likelihood is the process of 
estimating the model parameters; the likelihood function is as large as possible 
(maximized) given the form of the model under consideration and the data.  

In other words, parameter values are “chosen” such that the subject model (e.g., 
polynomial or power) obtains the best possible fit to the data, given the constraints of the 
model’s parameter structure.  

For example, suppose one wishes to fit a second-degree polynomial model with a 
constant variance to a dataset. The form of this model would be: 

𝑌𝑌 =  𝑏𝑏0  +  𝑏𝑏1  ∗  𝑋𝑋 + 𝑏𝑏2  ∗  𝑋𝑋2 

The parameters we wish to estimate in this case would be 𝑏𝑏0, 𝑏𝑏1, and 𝑏𝑏2 as well as the 
constant variance parameter, call it 𝜎𝜎2. To estimate these parameters, BMDS uses 
maximum likelihood procedures, the result being a vector of parameters that maximizes 
the likelihood function for the model specified.  

The “Log(likelihood)” value given for BMDS modeling results is the maximum value of the 
natural logarithm of the likelihood function.  

Also note that there are an associated number of parameters for each likelihood 
calculated. The number of parameters reported for the model under consideration is the 
total number possible for the model minus any parameter estimates that have values on 
the bounds set for their estimation (either bounds specified by the user or those inherent 
to the model).  

In the example above, if all 4 parameters were estimated, and did not equal a bound 
(e.g., did not equal 0 for the b parameters), the number of parameters reported for the 
fitted model likelihood is 4. 

The BMDS Results Workbook worksheets for continuous models provide five likelihood 
and AIC values that may be of interest to the user. These values are used in asymptotic 
Chi-Square tests of fit. Each of these likelihood values represents a model a user may 
consider in the analysis of the data. The five models are summarized in the following 
table. 

Note BMDS 3.0 handles Akaike Information Criterion (AIC) calculations somewhat 
differently from BMDS 2.x to facilitate comparing models with different likelihoods 
(i.e., normal vs. lognormal). For more details, refer to Section 7.3, “AIC for 
Continuous Models,” on page 26. 



 Benchmark Dose Software (BMDS) Version 3.0 
User Guide 

Page 32 of 79 

Table 1. Likelihood values and models 

Model Description 
A1: “Full” Constant Variance Model 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖,  

𝑉𝑉𝑉𝑉𝑉𝑉{𝑒𝑒𝑖𝑖𝑖𝑖} = 𝜎𝜎2 

A2: “Fullest” Model 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖,  
𝑉𝑉𝑉𝑉𝑉𝑉{𝑒𝑒𝑖𝑖𝑖𝑖} = 𝜎𝜎𝑖𝑖2 

A3: “Full” Model with variance structure 
specified by the user 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖,  
𝑉𝑉𝑉𝑉𝑉𝑉{𝑒𝑒𝑖𝑖𝑖𝑖} = 𝛼𝛼 × 𝜇𝜇𝑖𝑖𝜌𝜌 

R: “Reduced” Model 𝑌𝑌𝑖𝑖 = 𝜇𝜇 + 𝑒𝑒𝑖𝑖,  
𝑉𝑉𝑉𝑉𝑉𝑉{𝑒𝑒𝑖𝑖} = 𝜎𝜎2 

Fitted Model The user specified model 

Model A1 estimates separate and independent means for the observed dose groups (it is 
“full” or “saturated” in that respect) but posits a constant variance over those groups.  

Model A2 is the “fullest” model in that it estimates separate and independent means for 
the observed dose groups (as in Model A1) and it also estimates separate and 
independent variances for those groups. There is no assumed functional relationship 
among the means or among the variances across dose groups. This model is often 
referred to as the “saturated” model (it has as many mean and variance parameters as 
there are dose groups). The log-likelihood obtained for this model is the maximum 
attainable, for the data under consideration. 

Model A3 is similar to model A2, and may only differ with respect to its variance 
parameters. Model A2 estimates separate and independent means for the observed dose 
groups (like A1). If the user specifies a constant variance for the fitted model, then model 
A3 will also assume that and it becomes identical to Model A1. If the user assumes a 
non-constant variance for the fitted model, then Model A3 will also assume the same 
functional form for the variance.  

The reduced model (R) is the model that implies no difference in mean or variance over 
the dose levels. In other words, it posits a constant mean response level with the same 
variance around that mean at every dose level. 

The last model, the fitted model, is the user-specified model (e.g., power or polynomial, 
among others). A user may have reason to believe that a certain model may describe the 
data well, and thus uses it to calculate the BMD and BMDL. 

Refer to the next section for a description of how these models are used to test certain 
hypotheses about the data. 

8.6.2.3 Tests of Interest Table 

BMDS provides four different Tests of Fit that the user may use to determine an 
appropriate model for fitting their data. These Tests of Fit are based on asymptotic 
theories of the likelihood ratio.  

Without getting too technical, the likelihood ratio is just the ratio of two likelihood values, 
many of which are given in the BMDS output. Statistical theory proves that −2 ∗
𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) converges to a Chi-Square random variable as the sample size 
gets large and the number of dose levels gets large. These values can in turn be used to 
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obtain approximate probabilities to make inferences about model fit. Chi-Square tables 
can be found in almost any statistical book. 

Each of the five models described in the previous section on likelihood has a likelihood 
value. The BMDS program uses these values to create ratios from two models that form 
a meaningful test. Suppose the user wishes to test two models, A and B, for fit. One 
assumption that is made for these tests is that model A is “nested within” Model B, i.e., 
that Model B can be simplified (via restriction of some parameters in Model B) in such a 
way that the simplified model is Model A. This implies that Model A has fewer varying 
parameters. As an example, consider that the linear model is a “simpler” or “nested” 
model relative to the power model because the linear model has the power parameter 
restricted to be equal to 1. 

Note  The model with a higher number of parameters is always in the denominator of 
this ratio.  

Now, using the theory, −2 × log {𝐿𝐿(𝐴𝐴)
𝐿𝐿(𝐵𝐵)

} approaches a Chi-Square random variable. This 
can be simplified by using the fact that the log of a ratio is equal to the difference of the 
logs, or simply put,  

−2 × log �
𝐿𝐿(𝐴𝐴)
𝐿𝐿(𝐵𝐵)� = −2 × (log{𝐿𝐿(𝐴𝐴)} − log{𝐿𝐿(𝐵𝐵)}) = 2 × log{𝐿𝐿(𝐵𝐵)} − 2 × log {𝐿𝐿(𝐴𝐴)} 

The likelihood values given by BMDS are in fact the log-likelihoods, 𝑙𝑙𝑙𝑙𝑙𝑙{𝐿𝐿(𝐵𝐵)} and 
𝑙𝑙𝑙𝑙𝑙𝑙{𝐿𝐿(𝐴𝐴)}, so this likelihood ratio calculation becomes just a subtraction problem. This 
value can then in turn be compared to a Chi-Square random variable with a specified 
number of degrees of freedom. 

As mentioned in the section on likelihood, each log likelihood value has an associated 
number of parameters. The number of degrees of freedom for the Chi-Square test 
statistic is merely the difference between the two model parameter counts. In the mini-
example above, suppose Model A has 5 fitted parameters, and that Model B has 8. In 
this case, the Chi-Square value you would compare this to would be a Chi-Square with 8 
- 5 = 3 degrees of freedom. 

In the A vs B example, what is exactly being tested? In terms of hypotheses, it would be: 
H0: A models the data as well as B 
H1: B models the data better than A 

Keeping these tests in mind, suppose 2 × 𝑙𝑙𝑙𝑙𝑙𝑙{𝐿𝐿(𝐵𝐵)}  −  2 × 𝑙𝑙𝑙𝑙𝑙𝑙{𝐿𝐿(𝐴𝐴)}  =  4.89 based on 3 
degrees of freedom. Also, suppose the rejection criteria is a Chi-Square probability of 
less than .05. Looking on a Chi-Square table, 4.89 has a p-value somewhere between 
.10 and .25. In this case, H0 would not be rejected, and it would seem to be appropriate to 
model the data using Model A. BMDS automatically does the “table look-up” for the user, 
and provides the p-value associated with the calculated log-likelihood ratio having 
degrees of freedom as described above. 

The BMDS software provides four default tests. BMDS provides interpretation of the test 
results, based on p-values that have been selected by EPA. However, the computed p-
values are presented so that the user is free to use any rejection criteria they want. Each 
of the four default tests provided for any of the continuous models is discussed in some 
detail below. 

Test 1 (A2 vs R): Tests the null hypothesis that responses and variances don’t 
differ among dose levels. If this test fails to reject the null hypothesis, there may 
not be a dose-response. 
This test compares Model R (the simpler model) to Model A2. Model R is a simpler A2 (or 
nested within A2) since R can be obtained from A2 by restricting all the mean parameters 
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to be equal to one another and restricting all the variance parameters to be equal to one 
another. If this test fails to reject the null hypothesis, then there may not be a dose-
response, as the inference would be that the simpler model (R) is not much worse than 
the saturated model. The default p-value for the test (as reported in the Tests of Interest 
section of the output) is 0.05. A p-value less than 0.05 is an indication that there is a 
difference between response and/or variances among the dose levels and supports a 
conclusion to model the data. A p-value greater than 0.05 is an indication that the data 
may not be suitable for dose-response modeling. 

Test 2 (A1 vs A2): Tests the null hypothesis that variances are homogeneous. If 
this test fails to reject the null hypothesis, the simpler constant variance model 
may be appropriate. 
This test compares A1 (the simpler model) to Model A2. Model A1 is a simpler A2 (or 
nested within A2) since A1 can be obtained from A2 by restricting all the variance 
parameters to be equal to one another. If this test rejects the null hypothesis, the 
inference is that the constant variance assumption is incorrect and a modeled variance is 
necessary to adequately represent the data. The default p-value for the test (as reported 
in the Tests of Interest section of the output) is 0.05. A p-value less than 0.05 is an 
indication that the user should consider running a non-homogeneous variance model. A 
p-value greater than 0.05 is an indication that a constant variance assumption may be 
suitable for the dose-response modeling. 

Test 3 (A3 vs A2): Tests the null hypothesis that the variances are adequately 
modeled. If this test fails to reject the null hypothesis, it may be inferred that the 
variances have been modeled appropriately. 
Here, the test is one to see if the user-specified variance model, is appropriate. If the 
user-specified variance model is “constant variance,” then Models A1 and A3 are 
identical; this test is the same as Test 2, with the same interpretation. If the user-specified 
variance model is nonconstant (𝜎𝜎𝑖𝑖2 = 𝛼𝛼 × 𝜇𝜇𝑖𝑖𝜌𝜌), this test determines if that equation 
appears adequate to describe the variance across dose groups. Model A3 is the simpler 
version of Model A2 obtained by constraining the variances to fit the nonconstant 
variance equation. The default p-value for the test (as reported in the Tests of Interest 
section of the output) is 0.05. A p-value less than 0.05 is an indication that the user may 
want to consider a different variance model. A p-value greater than 0.05 supports the use 
of modeled variance for the dose-response modeling. 

Test 4 (Fitted vs A3): Tests the null hypothesis that the model for the mean fits the 
data. If this test fails to reject the null hypothesis, the user has support for the 
selected model. 
This test compares the Fitted Model to Model A3. The Fitted Model is as simpler Model 
A3 (or nested within Model A3) because it can be obtained by restricting the means 
(unrestricted in A3) to be described by the dose-response function under consideration. If 
this test fails to reject the null hypothesis, the inference is that the fitted model is 
adequate to describe the dose-related changes in the means (conditional on the form of 
the variance model; the form of the variance model is the same for the Fitted Model and 
Model A3). Failure to reject the null hypothesis is associated with the inference that the 
restriction of the means to the shape of the dose-response function under consideration 
is adequate. The default p-value for the test (as reported in the Tests of Interest section 
of the output) is 0.1. A p-value less than 0.1 is an indication that the user may want to try 
a different model (i.e., the fit of the Fitted Model is not good enough). A p-value greater 
than 0.1 is an indication that the Fitted Model appears to be suitable for dose-response 
modeling. 
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8.7 Outputs Specific to Dichotomous Models 

8.7.1 Asymptotic Correlation Matrix of Parameter Estimates (Not in BMDS 
3.0 Release) 

This feature will be added to BMDS 3.0 in the next BMDS update. 
This table in the individual model results provides the user with a matrix of correlation 
estimates between each of the parameters. Again, if these values seem to be high (in this 
case, very close to 1), there may have been a problem in the maximization. Also, as 
stated before, high correlation does not confirm that the problem of maximization in fact 
failed. The Weibull model, for instance, tends to give high correlation between the slope 
and power parameters, even when the likelihood was maximized. 

Note The parameter standard errors and the correlation matrix elements are based on 
a variance-covariance (VCV) matrix obtained by inverting the negative of the 
Hessian matrix (the Fisher-observed information matrix). That matrix is made up 
of second partial derivatives of the log-likelihood, with respect to the model 
parameters.  
 
For all the dichotomous models, except for the multistage model, the partials are 
derived using a finite difference approximation to those derivatives.  
 
For the multistage model, the partial derivatives are computed analytically (i.e., 
without approximating their values through the finite-difference method). 

8.7.2 Goodness of Fit 

This table in the individual model results gives both a listing of the data, model response 
estimates and scaled residuals. This is a good place for the user to look outside of the 
overall goodness-of-fit statistics reported in the Results Workbook worksheet’s 
Benchmark Dose Table (Section 8.2) and the Analysis of Deviance table (Section 8.7.3) 
to judge the appropriateness of the model. The table lists estimated probabilities, the 
expected and observed number of affected animals and scaled residuals for each dose 
group. If a model fits well, the observed and expected number of affected animals should 
be relatively close.  

The scaled residual values printed at the end of the table are defined as follows: 
(Obs − Expected)

𝑆𝑆𝑆𝑆
 , 

where “Expected” is the predicted number of responders from the model and SE equals 
the estimated standard error of that predicted number. For these models, the estimated 
standard error is equal to �[𝑛𝑛 × 𝑝𝑝 × (1 − 𝑝𝑝)], where 

n is the sample (litter) size, and 
p is the model-predicted probability of response. 

The overall model should be called into question if the scaled residual value for any dose 
group, particularly the control or low dose group, is greater than 2 or less than -2. 
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8.7.3 Analysis of Deviance Table 

The analysis of deviance table lists three maximum likelihood values.  

• The first is the “full model”. The full model would be any model that would perfectly fit 
all the positive response proportions at the dose levels specified by the user.  

• The second model is the “fitted model” maximum likelihood value. This is the value of 
the maximum likelihood function for the selected model and using the estimated 
parameter values.  

• The last likelihood value is the “reduced model” value, which would be the value of 
the likelihood function if all data points where assumed to come from the same 
population with the same population parameter. That is, for each dose level, the 
actual probability of an adverse effect would be the same. These values are just the 
likelihood functions evaluated according to the assumptions made at each step (i.e., 
the model assumption for the fitted model). 

Next to the likelihood values there are three values: Deviance, degrees of freedom (DF), 
and P-value.  

• The Deviance is the difference between the fitted or reduced model and the full 
model likelihood values. This deviance measures if the smaller model (i.e., the fitted 
or reduced model) describes the data as well as the full model does. This deviance is 
then used to formulate a Chi-Square random variable that tests exactly that. The user 
may choose a rejection level (0.05 is common) to test if the model fit is appropriate.  

• The p-value for testing if the fitted model adequately describes the data is given next 
to the fitted model likelihood, and the user can reject or not reject a hypothesis 
according to the p-value given.  

• The reduced model p-value would be used in the same way, but here the user would 
be testing if there is in fact a dose/response relationship where the true population 
proportion is a function of dose, as opposed to a single population with one 
parameter (the proportion of affected animals). 

It will often happen that several models provide an adequate fit to a given dataset. These 
models may be essentially unrelated to each other (for example a logistic model and a 
probit model often do about as well at fitting dichotomous data) or they may be related to 
each other in the sense that they are members of the same family that differ in which 
parameters are fixed at some default value. One can consider the log-logistic, the log-
logistic with non-zero background, and the log-logistic with threshold and non-zero 
background to all be members of the same family of models. Generally, within a family of 
models, as additional parameters are introduced the fit will appear to improve. Goodness-
of fit statistics presented in the main body of the Analysis of Deviance Table can be used 
to compare such related models, but are not designed to compare unrelated models. 
Alternative approaches are need for selecting between models that are not related (not in 
the same family). 

8.7.4 Cancer Slope Factor—Restricted Multistage Model Only 

Some additional assessment tools are imparted by the restricted Multistage model for 
use with cancer response data. The output page for the restricted Multistage model 
includes an estimate of the cancer slope factor (CSF), defined by EPA as the linear slope 
between the extra risk at the BMDL(10) and the extra risk at background (generally 0 
dose). The restricted Multistage model plot also includes a dashed line representing this 
linear slope. 
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8.8 Outputs Specific to Bayesian Dichotomous Models 
To compare the difference between any two Bayesian models, the unnormalized Log 
Posterior Probability (LPP) is given, which allows the computation of Bayes factors to 
compare any two models. To compare any two models, one takes the difference between 
the two LPP and exponentiates this difference. For example, if one wishes to compare 
the Log-Logistic (Model A) model (i.e., LPPA) to the multistage 2nd degree model (i.e., 
LPPB) one estimates the Bayes factor as 

𝐵𝐵𝐵𝐵 = exp(𝐿𝐿𝐿𝐿𝑃𝑃𝐴𝐴 − 𝐿𝐿𝐿𝐿𝑃𝑃𝐵𝐵), 

which assumes that both models have equal probability a priori. This value is then 
interpreted as the posterior odds one model is more correct than the other model, and is 
used in Bayesian hypothesis testing. In the example above, if the Bayes Factor was 2.5, 
the interpretation would be that the Log-logistic model is a posteriori 2.5 times more likely 
multistage model. When these values are normalized into proper probabilities, they are 
equivalent the posterior model probabilities given in model averaging except they assume 
equal prior probability a priori. The table below, adapted from Jeffreys (Jeffreys, 1998) is 
a common interpretation of Bayes Factors.  

Table 2. Bayes Factors 

Bayes Factor Strength of evidence for HA 
< 1 negative (supports HB) 

1 to 3.2 not worth mentioning 

3.2 to 10 substantial 

10 to 31.6 strong 

31.6 to 100 very strong 

100 decisive 

For BMDS 3.0, all LPP and corresponding posterior model probabilities are computed 
using the Laplace approximation. This value is different from the commonly used 
Bayesian Information Criterion (BIC), and the two should not be confused based upon 
other model averaging approaches, which use the BIC exclusively. Posterior probabilities 
formed from the BIC are 𝑂𝑂(1) estimators, where posterior probabilities formed using the 
Laplace approximation are 𝑂𝑂(𝑛𝑛−1). This means the latter approximation goes to the true 
posterior model probability with increasing data and the former, using the BIC, may not 
go to the true value.  

8.9 Outputs Specific to Nested Models 

8.9.1 Analysis of Deviance Table 

The analysis of deviance table in the individual model results lists three maximum 
likelihood values.  

• The first is the “full model”. The full model would be any model that would perfectly fit 
all the positive response proportions at the dose levels specified by the user.  

• The second model is the “fitted model” maximum likelihood value. This is the value of 
the maximum likelihood function for the selected model and using the estimated 
parameter values.  

http://hero.epa.gov/index.cfm?action=search.view&reference_id=4850043
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• The last likelihood value is the “reduced model” value, which would be the value of 
the likelihood function if all data points where assumed to come from the same 
population with the same population parameter. That is, for each dose level, the 
actual probability of an adverse effect would be the same.  

These values are just the likelihood functions evaluated according to the assumptions 
made at each step (i.e., the model assumption for the fitted model). 

Next to the likelihood values there are three values: Deviance, degrees of freedom (DF), 
and P-value. These are asymptotic Chi-Square tests that investigate the appropriateness 
of the model fit, as well as the reduced model.  

• The Deviance is the difference between the fitted or reduced model and the full 
model likelihood values. This deviance measures if the smaller model (i.e., the fitted 
or reduced model) describe the data as well as the full model does. This deviance is 
then used to formulate a Chi-Square random variable that tests exactly that. The user 
may choose a rejection level (0.05 is common) to test if the model fit is appropriate.  

• The p-value for testing if the fitted model adequately describes the data is given next 
to the fitted model likelihood, and the user can reject or not reject a hypothesis 
according to the p-value given.  

• The reduced model p-value would be used in the same way, but here the user would 
be testing if there is in fact a dose/response relationship where the true population 
proportion is a function of dose, as opposed to a single population with one 
parameter (the proportion of affected animals). 

8.9.2 Goodness of Fit Information—Litter Data and Grouped Data 

Both tables provide a listing of the data, expected and observed responses and scaled 
residuals (observed - expected).  

The “Litter Data” table contains this information for each litter.  

To obtain the “Group Data” table, the Litter Data were sorted on Dose (first), and by Litter 
Specific Covariate within Dose. Within dose, litters adjacent to each other with respect to 
Litter Specific Covariate were grouped together until the expected number of affected 
pups was at least one. This grouping was done prior to the estimation of an overall Chi-
Square and p-value to improve the validity of the Chi-Square approximation for the 
goodness of fit statistic. Goodness of Fit statistics. Both tables list estimated probabilities, 
the expected and observed number of affected animals and scaled residuals for each 
dose group. If a model fits well, the observed and expected number of affected animals 
should be relatively close. The overall Chi-Square value, and it corresponding p-value are 
an indication of that “closeness”. If the p-value is larger than some predetermined critical 
p-value, then the user may be able to conclude that the model is appropriate to model the 
data. 

The scaled residual values printed at the end of the table are defined as follows: 
(Obs − Expected)

𝑆𝑆𝑆𝑆
 , 

where “Expected” is the predicted number of responders from the model and SE equals 
the estimated standard error of that predicted number. For these models, the estimated 
standard error is equal to �[𝑛𝑛 × 𝑝𝑝 × (1 − 𝑝𝑝) × (𝜃𝜃 × (𝑛𝑛 − 1) + 1)],  

• 𝑛𝑛 is the sample (litter) size, 
• 𝑝𝑝 is the model-predicted probability of response, and 
• θ is the model-predicted intra-litter correlation coefficient. 
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The overall model should be called into question if the scaled residual value for any 
individual dose and litter-specific covariate combination, particularly for the control or a 
low dose group, is greater than 2 or less than -2. 
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9.0 Model Descriptions 

9.1 Models Included in BMDS 3.0 
The following tables detail the models and version numbers contained in this BMDS 
version. 

Frequentist Dichotomous Models Version (Date) 

Dichotomous Hill 1.0 (09/30/2018) 

Gamma Model 1.0 (09/30/2018) 

Logistic and Log-Logistic Models 1.0 (09/30/2018) 

Probit and Log Probit Models 1.0 (09/30/2018) 

Multistage Model 1.0 (09/30/2018) 

Weibull and Quantal Linear Models 1.0 (09/30/2018) 

 

Bayesian Dichotomous Models Version (Date) 

Dichotomous Hill 1.0 (09/30/2018) 

Gamma Model 1.0 (09/30/2018) 

Logistic and Log-Logistic Models 1.0 (09/30/2018) 

Probit and Log Probit Models 1.0 (09/30/2018) 

Multistage Model 1.0 (09/30/2018) 

Weibull and Quantal Linear Models 1.0 (09/30/2018) 

 

Frequentist Continuous Models Version (Date) 

Exponential Model 1.0 (09/30/2018) 

Hill Model 1.0 (09/30/2018) 

Polynomial and Linear Models 1.0 (09/30/2018) 

Power Model 1.0 (09/30/2018) 
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Nested Dichotomous Models Version (Date) 

NCTR Model 2.13 (04/27/2015) 

Nlogistic Model 2.20 (04/27/2015) 

 

Bayesian Model Averaging Version (Date) 

Bayesian Model Averaging 1.0 (09/30/2018) 

 

Multi-Tumor (MS_Combo) Model Version (Date) 

Multiple tumor analysis; combining 
restricted Multistage (cancer model) 
model runs over different tumors 

1.8 (04/30/2014) 

9.2 Model Types and Abbreviations 
BMDS uses the following naming conventions for model abbreviations. 

Continuous 
Exponential exp 
Hill hil 
Linear lin 
Polynomial ply 
Power pow 

Dichotomous 
Gamma gam 
Logistic log 
LogLogistic lnl 
LogProbit lnp 
Multistage mst 
Probit pro 
Weibull wei 
Quantal Linear qln 
Dichotomous Hill dhl 

Nested 
NCTR nctr 
Nested Logistic nln 

Bayesian Model Averaging 
bma 
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Multi-tumor 
MS_Combo multi 

9.3 Optimization Algorithms Used in BMDS 
The NLopt optimization library is used for BMDS 3.0.  

Several optimization algorithms available in the library are used to ensure reliability of the 
estimation:  

• For global optimization involving the maximum likelihood or maximum a-posteriori 
estimation, the L-BFGS method is attempted first. If it fails to converge, gradient free 
algorithms “subplex” and “BOBYQA” algorithms are then attempted.  

• For profiling, when only non-linear inequality constraints are needed, the COBYLA 
and MMA approaches are used and compared. In the case the methods return 
different optimum, the values producing the larger of the two is used.  

• For equality-constrained optimization, the augmented Lagrangian algorithm is used 
and either the L-BFGS, BOBYQA, or the “subplex” algorithm is used in the local 
optimization step. When two approaches produce different results, the values 
producing the larger optimum is used.  

NLopt 2.4.1 was used when developing the BMDS 3.0 code. This version is available for 
download from the NLopt GitHub site. 

For more information regarding the algorithms, refer to the NLopt documentation site. 

9.4 Frequentist Continuous Model Descriptions 

9.4.1 Special Considerations for Models for Continuous Endpoints in 
Simple Designs 

Models in this section are for continuous endpoints, such as weight or enzyme activity 
measures, in simple experimental designs that do not involve nesting or other 
complications. The models predict the mean value of the response, 𝜇𝜇 (dose), expected 
for a given dose. 

Models for continuous endpoints require consideration of more details than do those for 
dichotomous endpoints in similar designs. While for dichotomous models, we normally 
model the incidence of adversely affected individuals, and so expect the response to 
increase with increasing dose, in continuous models the change in a measure is modeled 
without regard for “adversity,” and the response may increase or decrease. Thus, just 
what constitutes an adverse change, and how to specify it, must be made explicit. The 
models in BMDS allow that specification to be made in several ways, which will be 
described below (BMD Computation). 

Another important contrast with dichotomous models is the nature of the probability 
distribution of response. In dichotomous models, the nature of the experimental design 
guarantees that the binomial probability distribution is appropriate. There are many more 
options for continuous distributions, however. In the current version of BMDS, the 
distribution of continuous measures is assumed to be normal, except for the Exponential 
Models, for which the user may assume either a normal or a lognormal distribution (see 
Section 9.4.5, “Lognormal Distributions,” on page 45 for more information). Moreover, for 
all models and normally distributed data, one may assume either a constant variance 

https://github.com/stevengj/nlopt/releases
https://nlopt.readthedocs.io/en/latest/
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(that is, the variance is the same regardless of dose group), or a variance that changes 
as a power function of the mean value: 

𝜎𝜎𝑖𝑖2 = 𝛼𝛼[𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖)]𝜌𝜌, 

which is the modeled variance for the ith dose group. the expression 𝜇𝜇 (dosei) is the 
observed mean (from the model) for the ith dose group, and 𝛼𝛼 and 𝜌𝜌 are estimated 
parameters. This formulation allows for several commonly encountered situations. For 
example, if 𝜌𝜌 =  2, then the coefficient of variation is constant, a common situation 
especially for biochemical measures; if 𝜌𝜌 =  1, then the variance is proportional to the 
mean, which is sometimes appropriate for large counts (especially if the constant of 
proportionality, k, is 1.0). When a lognormal distribution is assumed, the Exponential 
Models assume a constant (log-scale) variance, equivalent to a constant coefficient of 
variation. 

9.4.2 Likelihood Function 

Suppose there are g doses, 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1, … ,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔 

with 𝑁𝑁𝑖𝑖 subjects per dose group, and that 𝑌𝑌𝑖𝑖𝑖𝑖 is the measurement for the jth subject in the 
ith dose group. The form of the log-likelihood function depends upon whether the variance 
is assumed to be constant, or to vary among doses. 

For constant variance, the log-likelihood function is: 

𝐿𝐿 = −
𝑔𝑔
2

ln(2𝜋𝜋) −��
𝑁𝑁𝑖𝑖
2
𝑙𝑙𝑙𝑙𝜎𝜎𝑖𝑖2 +

(𝑁𝑁𝑖𝑖 − 1)𝑠𝑠𝑖𝑖2
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+
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𝑔𝑔
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Where 

𝜎𝜎𝑖𝑖2 =
∑ (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑁𝑁𝑖𝑖
𝑗𝑗=1  

𝑁𝑁𝑖𝑖 − 1
 

 
is the sample variance for the ith dose group, 

𝑦𝑦𝑖𝑖 =
∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖
𝑗𝑗=1

𝑁𝑁𝑖𝑖
 

 
is the sample mean for the ith dose group, g is the number of doses, Ni is the number of 
subjects in the ith dose group, and σ2 the variance which is same in all dose groups. 
Generally, σ2 and the parameters hidden here in λ( ) are to be estimated. 

 

If the variance is allowed to be a power function of the mean, the log-likelihood function 
is: 

𝐿𝐿 = �
𝑁𝑁𝑖𝑖
2
𝑙𝑙𝑙𝑙𝑙𝑙 +

𝑁𝑁𝑖𝑖𝜌𝜌
2
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Where 

𝐻𝐻𝑖𝑖 =  
𝐴𝐴𝑖𝑖

2𝛼𝛼[𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖)]𝜌𝜌
−

𝐵𝐵𝑖𝑖
𝛼𝛼[𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖)]𝜌𝜌−1 +

𝑁𝑁𝑖𝑖
2𝛼𝛼[𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖)]𝜌𝜌−2 

 
With 

𝐴𝐴𝑖𝑖 = (𝑁𝑁𝑖𝑖)𝑠𝑠𝑖𝑖2 + 𝑁𝑁𝑖𝑖𝑦𝑦�𝑖𝑖2 

𝐵𝐵𝑖𝑖 = 𝑁𝑁𝑖𝑖𝑦𝑦�𝑖𝑖 

 
The upper bound for the power parameter in the Hill and power models has been 
(somewhat arbitrarily) set to 18. That value was selected because it represents a very 
high degree of curvature that should accommodate almost every dataset, even ones with 
very (or absolutely) flat dose-response at low doses followed by a very steep dose-
response at higher doses. 

If the power parameter for the Hill or power model is reported equal to 18 and the 
warning “... hit a bound ... “ appears, the parameter estimates are maximum likelihood 
estimates only in the restricted sense that the power parameter has been assigned a 
value and the other parameters are MLEs conditional on that assigned value. Such 
model results are not strictly comparable with others in terms of AIC. In such a case, the 
BMD and BMDL could depend on the choice of power parameter; thus, sensitivity 
analysis is indicated if one intends to rely on the reported BMD or BMDL. 

Note BMDS 3.0 handles Akaike Information Criterion (AIC) calculations somewhat 
differently from BMDS 2.x to facilitate comparing models with different likelihoods 
(i.e., normal vs. lognormal). For more details, refer to Section 7.3, “AIC for 
Continuous Models,” on page 26. 

9.4.3 BMD Computation 

In the continuous models, the benchmark dose is always the dose that results in a 
prespecified change in the mean response. The change can be expressed in several 
ways: 
• an absolute change in the mean (Abs. Dev.); 
• a change in the mean equal to a specified number of control standard deviations 

(Std. Dev); 
• a specified fraction of the control group mean (Rel. Dev.); 
• a specified value for the mean at the BMD (i.e., not a change, but a fixed value) 

(Point); 
• a change equal to a specified probability of increase above background. (Hybrid) [A 

probabilistic definition equivalent to extra risk in the dichotomous model suite]. 

Symbolically, these are (where 𝛿𝛿 represents the BMRF designated by the user): 

|𝜇𝜇(𝐵𝐵𝐵𝐵𝐵𝐵) − 𝜇𝜇(0) = �
𝛿𝛿,𝐴𝐴𝐴𝐴𝐴𝐴.𝐷𝐷𝐷𝐷𝐷𝐷

𝛿𝛿 ∙ 𝜎𝜎�1, 𝑆𝑆𝑆𝑆𝑆𝑆.𝐷𝐷𝐷𝐷𝐷𝐷
𝛿𝛿 ∙ 𝜇𝜇(0),𝑅𝑅𝑅𝑅𝑅𝑅.𝐷𝐷𝐷𝐷𝐷𝐷

 

 

𝜇𝜇(𝐵𝐵𝐵𝐵𝐵𝐵) = 𝛿𝛿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
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Pr(𝑋𝑋 > 𝑋𝑋0|𝐵𝐵𝐵𝐵𝐵𝐵) − Pr(𝑋𝑋 > 𝑋𝑋0|0)
1 −  Pr(𝑋𝑋 > 𝑋𝑋0|0) = 𝛿𝛿 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

 

9.4.4 BMDL and BMDU Computation 

The general approach to computing the confidence limits for the BMD (called the BMDL 
and BMDU here) is the same for all the models in BMDS, and is based on the asymptotic 
distribution of the likelihood ratio (Crump and Howe, 1985). Two different approaches are 
followed in these models. In one (used for the power model), the equations that define 
the benchmark response in terms of the benchmark dose and the dose-response model 
are solved for one of the model parameters. The resulting expression is substituted back 
into the model equations, with the effect of re-parameterizing the model so that BMD 
appears explicitly as a parameter. A value for BMD is then found such that, when the 
remaining parameters are varied to maximize the likelihood, the resulting log-likelihood is 
less than that at the maximum likelihood estimates by exactly 

𝜒𝜒1,1−2𝛼𝛼
2

2
 

In the polynomial, Hill, and exponential models, it is impractical or impossible to explicitly 
reparameterize the dose-response model function to allow BMD to appear as an explicit 
parameter. For this model, the BMR equation is used as a non-linear constraint, and the 
minimum value of BMD is determined such that the log-likelihood is equal to the log-
likelihood at the maximum likelihood estimates less 

𝜒𝜒1,1−2𝛼𝛼
2

2
 

Occasionally, the following error message may appear for a model: “BMDL computation 
is at best imprecise for these data.” This is a flag that convergence for the BMDL was not 
“successful” in the sense that the required level of convergence (< 1e-3 relative change 
in the target function by the time the optimizer terminates) has not been achieved.  

9.4.5 Lognormal Distributions 

In previous versions of BMDS, continuous data were always assumed to be normally 
distributed. In the current version of BMDS, for the exponential models only, the user has 
the option of specifying that the continuous data being analyzed are lognormally 
distributed. Lognormal distributions are appropriate only for data that are strictly positive 
and may be preferable for such data (since the normal distribution allows, in theory, both 
positive and negative values, no matter what the mean and standard deviation). When a 
lognormal distribution is specified, the models assume a constant log-scale variance, 
which is equivalent to an assumption of a constant coefficient of variation (CV). 

The likelihood function shown above is then correct for data on the log scale (log-
transformed) and is the basis for fitting the log-transformed version of the model in 
question. That is, if 𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is the log-scale mean as a function of dose, the model being 
fit is 𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒)  =  𝑙𝑙𝑙𝑙{𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)}, where m(dose) is the specified model (e.g., one of the 
exponential models parameterized as shown in the section on Exponential Models). 
Therefore, m(dose) will then be a description of the change in the median response as a 
function of dose since the anti-log of the log-scale mean is the median. 

When the input data are summarized in terms of the sample mean and sample standard 
deviation (or standard error or variance), the exact likelihood of the data cannot be 
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determined if the data are lognormally distributed. In such cases, BMDS gives an 
approximate MLE solution by estimating the log-scale sample mean and log-scale 
sample standard deviation for each dose group as follows: 

estimated log-scale sample standard deviation (sL): 𝑠𝑠𝑠𝑠 = �(ln �1 + 𝑠𝑠2

𝑚𝑚2�)  

estimated log-scale sample mean (mL): 𝑚𝑚𝑚𝑚 = ln(𝑚𝑚) − 𝑠𝑠𝐿𝐿2

2
 

where m and s are the reported sample mean and sample standard deviation. When 
individual responses are available, the user may input those values (where the input data 
file will have two columns reporting the dose and the response for each experimental 
unit) and may request that the exact MLE solution be obtained (which the software does 
by first log-transforming the individual responses) or that the approximate solution using 
the estimates shown above be obtained (which the software does by first computing 
sample means and sample standard deviations). This option allows the user to compare 
estimates and determine the impact of the approximation or to provide consistency 
across datasets if some datasets have individual responses while others do not.
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9.4.6 Continuous Frequentist Models  

Table 3. The individual continuous models used and their respective parameters  

Model Parameters Notes 

Linear and Polynomial models 
𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝛽𝛽0 + 𝛽𝛽1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽2𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒2 + ⋯+
𝛽𝛽𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑛𝑛  
𝑛𝑛 is the degree of the polynomial, specified by 
user and must be a positive integer 
(maximum value = 21) 
 
The linear model is a special case of the 
polynomial model with n = 1 

Alpha is α from variance model 
Rho is ρ from variance model 
𝛽𝛽0 …𝛽𝛽𝑛𝑛are the polynomial 
coefficients 

User can restrict the value of the polynomial coefficients. Restricting them to be 
either “non-positive” or “non-negative” guarantees that the resulting function will be 
strictly decreasing, strictly increasing, or perfectly flat (when all the coefficients are 
zero). If the coefficients are unrestricted (i.e., an unrestricted form of the model is 
run), more complicated shapes are possible, and, particularly as the degree of the 
polynomial approaches the number of dose groups minus one, the polynomial will 
often be quite ‘‘wavy’’.  

Power 
𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝛾𝛾 + 𝛽𝛽 × (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝛿𝛿  

Alpha is α from variance model 
Rho is ρ from variance mode 
𝛾𝛾 = control (intercept) 
𝛽𝛽 = slope 
𝛿𝛿= power 

The Power parameter must be a positive number ≤ 18. If Power is restricted, the 
number must be > 1.) If 𝛿𝛿 < 1, then the slope of the dose-response curve becomes 
infinite at the control dose. This is biologically unrealistic, and can lead to numerical 
problems when computing confidence limits, so several authors have 
recommended restricting 𝛿𝛿 ≥ 1. 

Hill1 

𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝛾𝛾 = 𝑣𝑣×𝑑𝑑𝑛𝑛

𝐾𝐾𝑛𝑛+𝑑𝑑𝑛𝑛
  

𝛾𝛾 = control (intercept) 
𝑘𝑘 = dose with half-maximal 
change 
𝑛𝑛= power 
𝑣𝑣= maximum change 

𝑘𝑘 must be a positive number 
𝑛𝑛 must be a positive number ≤ 18. If 𝑛𝑛 is restricted, the number must be > 1 

Exponential1,2 

𝑀𝑀2,𝜇𝜇(𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑎𝑎 × 𝑒𝑒−𝑏𝑏×𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝑀𝑀3,𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑎𝑎 × 𝑒𝑒−(𝑏𝑏×𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑑𝑑 
𝑀𝑀4,𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑎𝑎 × (𝑐𝑐 − (𝑐𝑐 − 1) × 𝑒𝑒−𝑏𝑏×𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝑀𝑀5,𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑎𝑎 × (𝑐𝑐 − (𝑐𝑐 − 1) × 𝑒𝑒−(𝑏𝑏×𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑑𝑑 

𝑎𝑎 = background response (>0) 
𝑏𝑏 = slope (>0) 
𝑐𝑐= asymptote term: (>1 for 
increasing data, 0< c < 1 for 
decreasing data) 
𝑑𝑑= power (>1) 

The parameter “sign” is the indicator of the direction of change: +1 for data trending 
up, -1 for data trending down. It is very important that the user correctly specify the 
direction of change in the data - for the Exponential Models the “automatic” choice 
of adverse direction has not been included.  

1 BMDL estimates from models that have an asymptote parameter (including the Hill model) can be unstable when a wide range of parameter values can give nearly 
identical likelihoods. One indicator of that problem is that the estimated asymptotic response is far outside the range of the observed responses. The user should consult 
a statistician if this behavior is seen or suspected. 
2 RIVM (National Institute for Public Health and the Environment (Netherlands)). (2018). PROAST. Retrieved from 
https://www.rivm.nl/en/Documents_and_publications/Scientific/Models/PROAST 
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9.5 Frequentist Dichotomous Model Descriptions 

9.5.1 Special Considerations for Models for Dichotomous Endpoints in 
Simple Designs 

BMDS includes in this category models for dichotomous endpoints in which the 
observations are independent of each other. In these models, the dose-response model 
provides the probability that an animal will have an adverse response at a given dose. 
The actual number of animals that have an adverse response is assumed to be 
binomially distributed.  

An example of such a dataset is a study in which adult animals are exposed to different 
concentrations of a toxicant and then evaluated for the presence of liver toxicity. For 
models for dichotomous endpoints in which the responses are nested (for example, pups 
in litters, and litters nested within doses), see the section on Nested Model Descriptions. 

BMDS contains nine models for dichotomous endpoints (the Dichotomous Hill, Probit, 
Log-Probit, Logistic, Log-Logistic, Weibull, Quantal Linear, Gamma, and Multistage 
models). They may all be written in the form: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟}  =  𝛾𝛾 +  (1 –  𝛾𝛾)𝐹𝐹(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑;  𝛼𝛼,𝛽𝛽, . . . ) 

Here 𝐹𝐹(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑;  𝛼𝛼,𝛽𝛽, . . . ) is a cumulative distribution function and γ, α, β, . . ., are 
parameters to be estimated using maximum likelihood methods. Sometimes 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟} is written as 𝑃𝑃[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑; 𝛾𝛾,𝛼𝛼,𝛽𝛽, . . . ] to indicate the relationship between the 
response probability and the dose as well as parameters. When the function 
𝐹𝐹(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑;  𝛼𝛼,𝛽𝛽, . . . ) approaches zero as dose approach zero, the parameter 𝛾𝛾 represents 
the background incidence. In the Logistic and Probit models, F(0) is not zero, unlike in 
the Log-Logistic and Log-Probit models. In these models, 𝛾𝛾 is set to 0. 

9.5.2 Special Options for Models 

In addition to the options that are available to all dichotomous models, there may be 
model-specific options. Generally, these are options to restrict the legal range of a 
parameter or set of parameters. The range of a parameter may be restricted for two 
reasons: 

• The slope of the dose-response curve becomes infinite at a dose of 0 if the 
parameter falls below 1, so that the default is to restrain that parameter to be at least 
1, or 

• The quantal polynomial dose-response curve can become non-monotonic if the 
coefficients are allowed to be negative, often resulting in the curve looking ‘‘wavy’’, so 
the default is to restrict the coefficients to be non-negative. 

The applicable special options are listed in the sections for the specific models. 

9.5.3 Likelihood Function 

All models in the current version of BMDS are fit using maximum likelihood methods. This 
section describes the likelihood function used to fit the dichotomous models. 

Suppose we employ k doses: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒1,𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒2, … ,𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑘𝑘 
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and the total number of s and number of responding s in each dose group are 

𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑘𝑘 

 
and, respectively, 

𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑘𝑘 

 
The distribution of ni is assumed to be binomial with probability 

𝑝𝑝𝑖𝑖 = 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖;  𝜃𝜃), 𝑖𝑖 = 1,2, … 𝑘𝑘 

 
where 𝜃𝜃 is a vector of parameters. Then the log-likelihood function L can be written as 

𝐿𝐿 =  �𝐿𝐿𝑖𝑖(𝑁𝑁𝑖𝑖 ,𝑛𝑛𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖;  𝜃𝜃)
𝑘𝑘

𝑖𝑖=1

 

 
Where 

𝐿𝐿𝑖𝑖 = 𝑛𝑛𝑖𝑖 ln(𝑝𝑝𝑖𝑖) + (𝑁𝑁𝑖𝑖 − 𝑛𝑛𝑖𝑖) ln(1 − 𝑝𝑝𝑖𝑖) , 𝑖𝑖 = 1,2, … , 𝑘𝑘 

 
The upper bound for the power parameter in the gamma and Weibull models, and the 
slope parameter for the log-probit and log-logistic models, has been (somewhat 
arbitrarily) set to 18. That value was selected because it represents a very high degree of 
curvature that should accommodate almost every dataset, even ones with very (or 
absolutely) flat dose-response at low doses followed by a very steep dose-response at 
higher doses. 

If the power parameter for the gamma or Weibull model, or the slope parameter for the 
log-probit or log-logistic model, is reported equal to 18 and the warning “... hit a bound ... 
“ appears, the parameter estimates are maximum likelihood estimates only in the 
restricted sense that the power parameter has been assigned a value and the other 
parameters are MLEs conditional on that assigned value. Such model results are not 
strictly comparable with others in terms of AIC. In such a case, the BMD and BMDL could 
depend on the choice of power parameter; thus, sensitivity analysis is indicated if one 
intends to rely on the reported BMD or BMDL. 

9.5.4 BMD Computation 

The BMD is computed as a function of the parameters of the model, which must have 
already been estimated. The BMDs for dichotomous models are expressed as the dose 
that would give an (estimated) increase in incidence of x% above the control incidence 
(where x is often in the range of 1 to 10 percent). This increase in incidence is referred to 
here as the ‘‘BMRF’’, for benchmark response factor. Note that, although the word 
‘‘response’’ is used here, we are really talking about an increase of the incidence over the 
control incidence (added risk). The actual response associated with the BMR, will only be 
the same as the BMR when 𝑃𝑃(0)  =  0. This is because to obtain the actual response 
associated with the BMR one must solve for 𝑃𝑃(𝑑𝑑) in the equation for added or extra risk. 

Two formulations for computing the excess over background are in common use, the 
extra risk model and the additional risk model. In the extra risk model, 

𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑝𝑝(𝐵𝐵𝐵𝐵𝐵𝐵; 𝛾𝛾,𝛼𝛼,𝛽𝛽, … ) − 𝑝𝑝(0; 𝛾𝛾,𝛼𝛼,𝛽𝛽, … )

(1 − 𝑝𝑝(0; 𝛾𝛾,𝛼𝛼,𝛽𝛽, … )  
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while in the additional risk model, 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑝𝑝(𝐵𝐵𝐵𝐵𝐵𝐵;  𝛾𝛾,𝛼𝛼,𝛽𝛽, … ) − 𝑝𝑝(0; 𝛾𝛾,𝛼𝛼,𝛽𝛽, … ) 

 
The equation appropriate to the risk type formulation that the user requests is solved to 
get the BMD for a specific model and dataset. Details of this computation are included in 
the descriptions of the models. 

9.5.5 BMDL Computation 

BMDS currently calculates one-sided confidence intervals, in accordance with current 
BMD practice. The general approach to computing the confidence limits for the BMD 
(called the BMDL and BMDU here) is the same for all the models in BMDS, and is based 
on the asymptotic distribution of the likelihood ratio (Crump and Howe, 1985) . Two 
different approaches are followed in these models. In one, the equations that define the 
benchmark response in terms of the benchmark dose and the dose-response model are 
solved for one of the model parameters. The resulting expression is substituted back into 
the model equations, with the effect of reparameterizing the model so that BMD appears 
explicitly as a parameter. A value for BMD is then found such that, when the remaining 
parameters are varied to maximize the likelihood, the resulting log-likelihood is less than 
that at the maximum likelihood estimates by exactly 

𝜒𝜒1,1−2𝛼𝛼
2

2
 

 
In a few models, it is impractical or impossible to explicitly reparameterize the dose-
response model function to allow BMD to appear as an explicit parameter. For these 
models, the BMR equation is used as a non-linear constraint, and the minimum value of 
BMD is determined such that the log-likelihood is equal to the log-likelihood at the 
maximum likelihood estimates less 

𝜒𝜒1,1−2𝛼𝛼
2

2
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9.5.6 Dichotomous Frequentist Models 

Table 4. The individual dichotomous models used and their respective parameters  

Model Parameters Notes 
Multistage 
𝑝𝑝(𝑑𝑑) = 𝛾𝛾 + (1 − 𝛾𝛾)�1 − exp�−∑ 𝛽𝛽𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗𝑛𝑛

𝑗𝑗=1 ��  
𝛾𝛾 = background (>0, <1) 
𝛽𝛽 = dose coefficients  

Can restrict all 𝛽𝛽coefficients to be > 1. Doing so with guarantee that the dose-
response function will either be perfectly flat or always increasing with no negative 
slopes. The degree of the multistage model is 𝑛𝑛. The maximum degree polynomial 
to fit is 23. Per EPA cancer guidance, when the Multistage model is used for 
cancer analyses (e.g., in the BMDS Multi-tumor model) all 𝛽𝛽coefficients are 
restricted to be positive. 

Weibull 
𝑝𝑝(𝑑𝑑) = 𝛾𝛾 + (1 − 𝛾𝛾)(1 − exp[−𝛽𝛽𝑑𝑑𝛼𝛼])  

𝛾𝛾 = background (>0, <1) 
𝛼𝛼 = power (<18, ≥1 if restricted) 
𝛽𝛽 = slope (≥1 if restricted) 

Restrict α ≥ 1. If α < 1, then the slope of the dose-response curve becomes infinite 
at the control dose. This is biologically unrealistic, and can lead to numerical 
problems when computing confidence limits, so several authors have 
recommended restricting α ≥ 1. 
The Quantal Linear model results from setting 𝛼𝛼 = 1. 

Gamma 

𝑝𝑝(𝑑𝑑) = 𝛾𝛾 + 1−𝛾𝛾
Γ(𝛼𝛼)∫ 𝑡𝑡𝛼𝛼−1 exp(−𝑡𝑡)𝑑𝑑𝑑𝑑 𝛽𝛽𝛽𝛽

0   

𝛾𝛾 = background (>0, <1) 
𝛼𝛼 = power (<18, ≥1 if restricted) 
𝛽𝛽 = slope (≥1 if restricted) 

If α < 1, then the slope of the dose-response curve becomes infinite at the control 
dose. This is biologically unrealistic, and can lead to numerical problems when 
computing confidence limits, so several authors have recommended restricting α ≥ 
1. Note for the unrestricted Gamma model the α > 0.2 for numerical reasons.  

Logistic 

𝑝𝑝(𝑑𝑑) = 1
1+exp [−𝛼𝛼−𝛽𝛽𝛽𝛽]

  

𝛼𝛼 = intercept 
𝛽𝛽 = slope (>1 if restricted) 

None 

Log-Logistic 

𝑝𝑝(𝑑𝑑) = 𝛾𝛾 + 1−𝛾𝛾
1+exp [−𝛼𝛼−𝛽𝛽log(𝑑𝑑)]

  

𝛾𝛾 = background (>0, <1) 
𝛼𝛼 = power (<18, ≥1 if restricted) 
𝛽𝛽 = slope (>1 if restricted) 

If the slope is allowed to be less than 1, the slope of the dose-response curve is 
infinite at zero dose. 
 

Probit 
𝑝𝑝(𝑑𝑑) =  Φ(𝛼𝛼 +  𝛽𝛽𝛽𝛽), where 𝜙𝜙(𝑥𝑥) =

∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
−∞  and 𝜙𝜙(𝑡𝑡) =  1

√2𝜋𝜋
𝑒𝑒
−𝑡𝑡2

2  

𝛼𝛼 = intercept 
𝛽𝛽 = slope (≤18, ≥1 if restricted) 

If the slope is allowed to be less than 1, the slope of the dose-response curve is 
infinite at zero dose. 
Φ is the standard normal density function, 𝜙𝜙 is the normal distribution function 

Log-Probit 
𝑝𝑝(𝑑𝑑) = 𝛾𝛾 + (1 − 𝛾𝛾)Φ[𝛼𝛼 + 𝛽𝛽log (𝑑𝑑)]  

𝛾𝛾 = background (>0, <1) 
𝛼𝛼 = intercept 
𝛽𝛽 = slope (≤18, ≥1 if restricted) 

For the log-probit model, the slope of the model will approach zero as dose 
approaches zero. However, depending on the data and parameter estimates, the 
slope for the log-probit model, for some relatively low doses perhaps less than 
those corresponding to the BMR, the slope can be quite steep, which may be 
manifested in terms of a relatively low value for the BMDL (or perhaps an “NA” 
result for the BMDL if this causes convergence problems because the steepness 
entails BMDL estimates that get very small). 



 Benchmark Dose Software (BMDS) Version 3.0 
User Guide 

Page 52 of 79 

 

Table 5. Calculation of the BMD and BMDL for the individual dichotomous models  

Model BMD Calculation BMDL Calculation 
Multistage 
 

There is no general analytic form for the BMD in terms of the BMR 
and the estimated model parameters for the multistage model. 
Instead, the BMD is the root of the equation 
 𝛽𝛽1𝐵𝐵𝐵𝐵𝐵𝐵 + ⋯+𝑛𝑛𝐵𝐵𝐵𝐵𝐷𝐷𝑛𝑛 + ln(1 − 𝐴𝐴) = 0, where 

𝐴𝐴 = �
𝐵𝐵𝐵𝐵𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐵𝐵𝐵𝐵𝐵𝐵
1 − 𝛾𝛾  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

The BMR equation is used as a non-linear constraint, and the minimum 
value of BMD is determined such that the log-likelihood is equal to the 
log-likelihood at the maximum likelihood estimates less 

𝜒𝜒1,1−2𝛼𝛼
2

2
 

 

Weibull 
 

𝐵𝐵𝐵𝐵𝐵𝐵 =

⎩
⎪⎪
⎨

⎪⎪
⎧ �

−ln (1 − 𝐵𝐵𝐵𝐵𝐵𝐵)
𝛽𝛽 �

1
𝛼𝛼

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

�
−ln (1 − 𝐵𝐵𝐵𝐵𝐵𝐵

1 − 𝛾𝛾)

𝛽𝛽 �

1
𝛼𝛼

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

  

To calculate the BMDL, the defining equations for the BMD are solved 
for the slope parameter β, which is then replaced in the original model 
equations. This makes BMD appear in the model equations as a 
parameter. For more details, refer to Section 9.5.5, “BMDL 
Computation,” on page 50. 

 

Gamma 
 

Let 𝐺𝐺(𝑥𝑥;𝛼𝛼) = 1
𝛤𝛤(𝛼𝛼)∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑𝑥𝑥

0  be the incomplete Gamma function 
and 𝐺𝐺−1(∙;  𝛼𝛼) be its inverse function. Then 

𝐵𝐵𝐵𝐵𝐵𝐵 =

⎩
⎪
⎨

⎪
⎧  

𝐺𝐺−1(𝐵𝐵𝐵𝐵𝐵𝐵;𝛼𝛼)
𝛽𝛽  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐺𝐺−1 �𝐵𝐵𝐵𝐵𝐵𝐵1 − 𝛾𝛾 ;𝛼𝛼�

𝛽𝛽  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

To calculate the BMDL, the defining equations for the BMD are solved 
for the slope parameter β, which is then replaced in the original model 
equations. This makes BMD appear in the model equations as a 
parameter. For more details, refer to Section 9.5.5, “BMDL 
Computation,” on page 50. 
 

Logistic 
 

The BMD estimate for the Logistic model is defined implicitly by 
the following equation; an iterative numerical method is used to 
determine the value of the BMD 

𝐵𝐵𝐵𝐵𝐵𝐵 =
ln ( 1−𝑍𝑍

1+𝑍𝑍×𝑒𝑒−𝛼𝛼
)

𝛽𝛽
 where 𝑍𝑍 = �

𝐵𝐵𝐵𝐵𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐵𝐵𝐵𝐵𝐵𝐵 × 1+𝑒𝑒−𝛼𝛼

𝑒𝑒−𝛼𝛼
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

To calculate the BMDL, the defining equations for the BMD are solved 
for the intercept parameter α, which is then replaced in the original 
model equations. This makes BMD appear in the model equations as a 
parameter. For more details, refer to Section 9.5.5, “BMDL 
Computation,” on page 50. 

 

Log-Logistic 
 

ln(𝐵𝐵𝐵𝐵𝐵𝐵) =

⎩
⎪
⎨

⎪
⎧ ln � 𝐵𝐵𝐵𝐵𝐵𝐵

1 − 𝐵𝐵𝐵𝐵𝐵𝐵� − 𝛼𝛼
𝛽𝛽  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

ln � 𝐵𝐵𝐵𝐵𝐵𝐵
1 − 𝛾𝛾 − 𝐵𝐵𝐵𝐵𝐵𝐵� − 𝛼𝛼

𝛽𝛽  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

To calculate the BMDL, the defining equations for the BMD are solved 
for the intercept parameter α, which is then replaced in the original 
model equations. This makes BMD appear in the model equations as a 
parameter. For more details, refer to Section 9.5.5, “BMDL 
Computation,” on page 50. 
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Model BMD Calculation BMDL Calculation 
Probit 
 

The BMD estimate for the Logistic model is defined implicitly by 
the following equation; an iterative numerical method is used to 
determine the value of the BMD 

𝐵𝐵𝐵𝐵𝐵𝐵 =

⎩
⎪
⎨

⎪
⎧Φ

−1�𝐵𝐵𝐵𝐵𝐵𝐵[1 −Φ(α)] + Φ(α)� − α
𝛽𝛽  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Φ−1�𝐵𝐵𝐵𝐵𝐵𝐵 + Φ(α)� − α
𝛽𝛽  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

To calculate the BMDL, the defining equations for the BMD are solved 
for the intercept parameter α, which is then replaced in the original 
model equations. This makes BMD appear in the model equations as a 
parameter. For more details, refer to Section 9.5.5, “BMDL 
Computation,” on page 50. 

 

Log-Probit 
 

ln (𝐵𝐵𝐵𝐵𝐷𝐷) =

⎩
⎪
⎨

⎪
⎧Φ

−1(𝐵𝐵𝐵𝐵𝐵𝐵) − α
𝛽𝛽  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Φ−1 𝐵𝐵𝐵𝐵𝐵𝐵
1 − 𝛾𝛾 − 𝛼𝛼

𝛽𝛽  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

To calculate the BMDL, the defining equations for the BMD are solved 
for the intercept parameter α, which is then replaced in the original 
model equations. This makes BMD appear in the model equations as a 
parameter. For more details, refer to Section 9.5.5, “BMDL 
Computation,” on page 50. 
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9.6 Bayesian Dichotomous Model Descriptions 
The Bayesian dichotomous models used in BMDS 3.0 are identical to the frequentist 
parametric models described above. The main difference is that the Bayesian models 
incorporate prior information into the analysis, and this information is used in the model 
fit. 

For datasets with a large number of observations, there should be little or no quantitative 
difference between the Bayesian fits and the frequentist fits.  

When there are fewer data points, the prior will affect the fit. Here, the impact is most 
noticeable on hockey-stick dose-response curves and dose-response data that suggest 
strong supralinear fits. In these cases, fits are “shrunk back” to smoother dose-response 
relationships whose rate of change is less steep.  

The models and priors are described in the following table.  
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Table 6. The individual models used and their respective parameter priors. Note that logit(𝛄𝛄) = 𝐥𝐥𝐥𝐥𝐥𝐥 � 𝛄𝛄
𝟏𝟏−𝛄𝛄

�.  

Model Constraints Priors Notes 
Quantal linear 
𝑝𝑝1(𝑑𝑑) = 𝛾𝛾 + (1 − 𝛾𝛾)(1 − exp[−𝛽𝛽𝛽𝛽])  

β ˃ 0 
0 ≤ γ ≤ 1 

log(β) ~ Normal(0,1) 
liogit(γ) ~ Normal(0,2)  

Multistage 
𝑝𝑝2(𝑑𝑑) = 𝛾𝛾 + (1 − 𝛾𝛾)�1 − exp�−∑ 𝛽𝛽𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 ��  

βI ˃ 0 
0 ≤ γ ≤ 1 

log(β1) ~ Normal(0,0.25) 
log(βi) ~ Normal(0,1) i ≥ 2 
logit(γ) ~ Normal(0,2) 

Note the prior over the β1 parameter expresses the belief that the 
linear term should be positive if the quadratic term is positive in 
the two hit model of carcinogenesis. For model averaging i = 2. 

Weibull 
𝑝𝑝3(𝑑𝑑) = 𝛾𝛾 + (1 − 𝛾𝛾)(1 − exp[−𝛽𝛽𝑑𝑑𝛼𝛼])  

β ˃ 0 
α ˃ 0 
0 ≤ γ ≤ 1 

log(β) ~ Normal(0,1) 
log(α) ~ Normal(log(2),0.18) 
logit(γ) ~ Normal(0,2). 

Here the prior over α is designed such that there is only a 0.01 
prior probability the power parameter will be less than 1. This 
allows for models that are supra-linear; however, it requires a 
large amount of data for the α parameter to go much below 1.  

Gamma 

𝑝𝑝4(𝑑𝑑) = 𝛾𝛾 + 1−𝛾𝛾
Γ(𝛼𝛼)∫ 𝑡𝑡𝛼𝛼−1 exp(−𝑡𝑡)𝑑𝑑𝑑𝑑 𝛽𝛽𝛽𝛽

0   
β ˃ 0 
α ˃ 0.2 
0 ≤ γ ≤ 1 

log(β) ~ Normal(0, 1) 
log(α) ~ Normal(log(2),0.18) 
logit(γ) ~ Normal(0,2) 

Here the prior over α is designed such that there is only a low 
prior probability the power parameter will be less than 1. This 
allows for models that are supra linear; however, it requires a 
large amount of data for the parameter to go much below 1. The α 
parameter is also constrained to be greater than 0.2 for numerical 
reasons.  

Dichotomous Hill 

𝑝𝑝5(𝑑𝑑) = 𝛾𝛾 + 𝜈𝜈(1−𝛾𝛾)
1+exp [−𝑎𝑎−𝑏𝑏 log(𝑑𝑑)]

  
0 ≤ γ ≤ 1 
0 ≤ ν ≤ 1 
-∞ < a < ∞ 
b > 0 

a ~ Normal(3, 3.3) 
log(b) ~ Normal(log(2),0.5) 
logit(γ) ~ Normal(-1,2)   
logit(ν) ~ Normal(0,3) 

 

Logistic 

𝑝𝑝6(𝑑𝑑) = 1
1+exp [−𝛽𝛽0−𝛽𝛽1𝑑𝑑]

  
-∞ < β0 < ∞ 
β1 > 0 

β0 ~ Normal(0, 2) 
log(β1) ~ Normal(0,1) 

 

Log-Logistic 

𝑝𝑝7(𝑑𝑑) = 𝛾𝛾 + 1−𝛾𝛾
1+exp [−𝛽𝛽0−𝛽𝛽1log (𝑑𝑑)]

  
-∞ < β0 < ∞ 
β1 > 0 

β0 ~ Normal(0, 1) 
log(β1) ~ Normal(log(2),0.25) 
logit(γ) ~ Normal(0,2). 

 

Probit 
𝑝𝑝8(𝑑𝑑) =  Φ(𝛽𝛽0 + 𝛽𝛽1𝑑𝑑)  

-∞ < β0 < ∞ 
β1 > 0 

β0 ~ Normal(0,2) 
log(β1) ~ Normal(0,1)  

Log-Probit 
𝑝𝑝9(𝑑𝑑) = 𝛾𝛾 + (1 − 𝛾𝛾)Φ[𝛽𝛽0 + 𝛽𝛽1 log(𝑑𝑑)]  

-∞ < β0 < ∞ 
β1 > 0 

β0 ~ Normal(0, 1) 
log(β1) ~ Normal(log(2),0.25) 
logit(γ) ~ Normal(0,2) 
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9.6.1 Bayesian Model Averaging 

From a Bayesian perspective, inference proceeds by defining a data generating 
mechanism given model 𝑀𝑀 and its parameters. That is, one defines the likelihood ℓ(𝐷𝐷|𝑀𝑀) 
over the data D, which contains a data generating mechanism (e.g. normal, binomial), a 
model𝑀𝑀, of the moments of that mechanism, and a prior probability model 𝜋𝜋(𝑀𝑀) over𝑀𝑀. 
This probability model is 𝜋𝜋(𝑀𝑀) = 𝑓𝑓(𝑀𝑀)𝑓𝑓(𝜃𝜃|𝑀𝑀) where the prior probability of the model is 
𝑓𝑓(𝑀𝑀) and 𝑓𝑓(𝜃𝜃) is a density over the model’s parameters. For single model inference, 
𝑓𝑓(𝑀𝑀) = 1 and inference on model 𝑀𝑀 given D is defined by Bayes theorem, which is  

𝑔𝑔(𝑀𝑀|𝐷𝐷) ∝  ℓ(𝐷𝐷|𝑀𝑀)𝜋𝜋(𝑀𝑀). 
From a Bayesian perspective, functions of 𝜃𝜃 also have posterior densities, which are 
transforms of the original parameters. For example, the parameter of interest in this 
manuscript is the benchmark dose, which is a function of the original parameters, i.e., 
ℎ(𝜃𝜃) = 𝐵𝐵𝐵𝐵𝐵𝐵. In what follows, we define inference over K potential models and the BMD 
using Bayesian model averaging; here 0 ≤ 𝑓𝑓(𝑀𝑀) ≤ 1 and ∑ 𝑓𝑓𝑘𝑘(𝑀𝑀𝑘𝑘) = 1𝐾𝐾

𝑘𝑘=1 .  

For a dataset D and a model Mk, we estimate each model Mk‘s parameter vector 𝜃𝜃𝑘𝑘 using 
maximum a posteriori estimation (MAP) and compute the posterior density of the BMD, 
i.e., gk(BMD |𝑀𝑀𝑘𝑘 ,𝐷𝐷). The posterior density of the model averaged BMD is 

𝑔𝑔𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵|𝐷𝐷) =  ∑ 𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷)𝑔𝑔𝑘𝑘(𝐵𝐵𝐵𝐵𝐵𝐵|𝑀𝑀𝑘𝑘,𝐷𝐷),9
𝑘𝑘=1  (1) 

where πk is the posterior probability of model Mk given the data. The BMD and BMDL are 
computed from this posterior density. More specifically, the point estimate of the BMD is 
the weighted average of individual MAP estimates and the BMDL estimate is taken as the 
100(1 − 𝛼𝛼) percentile for appropriately chosen probability level α. Model weights πk are 
approximated using a Laplace approximation. 

The posterior density of the individual models and the posterior model weights described 
in (1) are approximated using a Laplacian approximation. As described in the following 
sections, this approximation is similar to the Model Averaged Profile Likelihood (MAPL) 
approach of Fletcher and Turek (Fletcher and Turek, 2012). However, while MAPL relies 
only on the likelihood, our approach incorporates prior information in calculating the 
marginal profile density of the BMD. In other words, both the likelihood and prior are 
used. The model-specific density is defined by treating profile density bounds as 
quantiles of a marginal posterior density for the parameter of interest, and the relation to 
the present approach and the MAPL approach is justified asymptotically.  

Our approach can be related to the MAPL framework by substituting the posterior density 
for the likelihood in each of the steps. Instead of information criteria-based weight, we 
use the Laplace approximation for model weights. This method approximates the 
marginal likelihood using the posterior MAP estimate and Hessian of the log-posterior. 

For the model average approach, all Bayesian models described above are available in 
the model average. This is with the exception of the multistage model, which is capped to 
a maximum degree of 2. The reasoning for this follows upon the work of Nitcheva, et al. 
(2007) who show higher-order polynomials are not necessary and the fact that other 
models of the model averaging suite (e.g., dichotomous Hill) provide increased curvature.  

9.6.2 Weight Calculation 

In previous approaches to benchmark dose inference using model averaging, weights 
were calculated using either the BIC or AIC, where the AIC is used primarily in frequentist 
model averaging.  

http://hero.epa.gov/index.cfm?action=search.view&reference_id=4286986
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The proposed approach generates weights using the Laplace approximation to the 
marginal density of the data. That is, for model Mk, 1 ≤ k ≤ 9, with parameter vector 𝜃𝜃𝑘𝑘 of 
length s, one approximates the marginal density as 

𝐼𝐼𝑘𝑘 = (2𝜋𝜋)𝑠𝑠 2� �Σ�𝑘𝑘�
1
2� ℓ�𝐷𝐷�𝑀𝑀𝑘𝑘 ,𝜃𝜃�𝑘𝑘�𝑔𝑔�𝜃𝜃�𝑘𝑘|𝑀𝑀𝑘𝑘 ,𝐷𝐷�𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷),  (2) 

where 

 Σ�𝑘𝑘 is the negative inverse Hessian matrix evaluated at 𝜃𝜃�𝑘𝑘,  
𝜃𝜃�𝑘𝑘 is the MAP estimate,  
 ℓ�𝐷𝐷�,𝑀𝑀𝑘𝑘 ,𝜃𝜃�𝑘𝑘� is the likelihood of the model given the data D, and  
𝑔𝑔(𝑀𝑀|𝐷𝐷) =  𝑔𝑔�𝜃𝜃�𝑘𝑘�𝑀𝑀𝑘𝑘,𝐷𝐷�𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷) is the MAP of the posterior density for 𝑀𝑀𝑘𝑘.  

To compute the posterior model probabilities for 𝑀𝑀𝑘𝑘, one calculates the MAP and then 
calculates Ik using equation (2). The posterior probability of the model is  

𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷) =  
𝑓𝑓(𝑀𝑀𝑘𝑘)𝐼𝐼𝑘𝑘

∑ 𝑓𝑓(𝑀𝑀𝑘𝑘)𝐼𝐼𝑘𝑘9
𝑖𝑖=1

, 

where 𝑓𝑓(𝑀𝑀𝑘𝑘) is the prior probability of model Mk (e.g., 1/9 if each of 9 models is treated as 
equally plausible a priori).  

9.6.3 Computation of the Model-Averaged BMDL and BMD Point Estimate 

Our model-averaged BMD point estimate is the weighted average of BMD MAP 
estimates from individual models, weighted by posterior weights 𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷). This is 
equivalent to the median of the approximate posterior density of θ. For the BMDL or 
BMDU estimates, equation (1) is integrated. A 100(α)% BMDU estimate or 100(1 - α)% 
BMDL estimate is the value BMDα such that:  

𝛼𝛼 =  ∫ 𝑔𝑔𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵|𝐷𝐷) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵𝐵𝐵𝐷𝐷𝛼𝛼
−∞   

which is 

= ∑ 𝜋𝜋𝑘𝑘(𝑀𝑀𝑘𝑘|𝐷𝐷)∫ 𝑔𝑔𝑘𝑘(𝐵𝐵𝐵𝐵𝐵𝐵|𝑀𝑀𝑘𝑘,𝐷𝐷) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝐷𝐷𝛼𝛼
−∞ .9

𝑘𝑘=1  (3) 

In (3), the quantity ∫ 𝑔𝑔𝑘𝑘(𝐵𝐵𝐵𝐵𝐵𝐵|𝑀𝑀𝑘𝑘 ,𝐷𝐷) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝐷𝐷𝛼𝛼
−∞  is approximated. That is,  

� 𝑔𝑔𝑘𝑘(𝐵𝐵𝐵𝐵𝐵𝐵|𝑀𝑀𝑘𝑘 ,𝐷𝐷) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐵𝐵𝐵𝐵𝐷𝐷𝛾𝛾

−∞
 

≈ 1
2

Pr� −2 log [𝑔𝑔�𝑘𝑘�𝐵𝐵𝐵𝐵𝐵𝐵��𝑀𝑀𝑘𝑘,𝐷𝐷�� − 2 log [𝑔𝑔�𝑘𝑘�𝐵𝐵𝐵𝐵𝐷𝐷𝛾𝛾�𝑀𝑀𝑘𝑘,𝐷𝐷�] <  𝜒𝜒1,𝛾𝛾 
2 ), (4) 

where 𝑔𝑔�𝑘𝑘(𝑥𝑥|𝑀𝑀𝑘𝑘,𝐷𝐷) is the maximum value of the posterior evaluated at x, where x is the 
MAP estimate 𝐵𝐵𝐵𝐵𝐵𝐵 or the upper limit of integration 𝐵𝐵𝐵𝐵𝐷𝐷𝛾𝛾, and 𝜒𝜒1,𝛾𝛾 

2  is the 𝛾𝛾 quantile of a 
chi-squared random variable with one degree of freedom. The above approximation 
assumes 𝐵𝐵𝐵𝐵𝐷𝐷𝛾𝛾 < 𝐵𝐵𝐵𝐵𝐵𝐵� . When 𝐵𝐵𝐵𝐵𝐵𝐵� < 𝐵𝐵𝐵𝐵𝐷𝐷𝛾𝛾 the right-hand side of (4) is replaced by  

≈ 1 −
1
2

Pr� −2 𝑙𝑙𝑙𝑙𝑙𝑙 [𝑔𝑔�𝑘𝑘�𝐵𝐵𝐵𝐵𝐵𝐵� �𝑀𝑀𝑘𝑘 ,𝐷𝐷�� − 2 log [𝑔𝑔�𝑘𝑘�𝐵𝐵𝐵𝐵𝐷𝐷𝛾𝛾�𝑀𝑀𝑘𝑘 ,𝐷𝐷�] <  𝜒𝜒1,𝛾𝛾 
2 ). 

This approximation is like the profile likelihood used when estimating the BMDL and 
BMDU using the method of maximum likelihood, but in this case  𝑔𝑔�𝑘𝑘(𝑥𝑥|𝑀𝑀𝑘𝑘 ,𝐷𝐷) is the 
posterior density, which contains both the likelihood and the prior. 
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9.7 Frequentist Nested Model Descriptions 
Note The NCTR (National Center for Toxicological Research) nested dichotomous 

model is not in the BMDS 3.0 release. It will be included in a future release. 

9.7.1 Special Considerations for Models for Nested Dichotomous 
Endpoints 

The most common application of the models in this section will be to developmental 
toxicology studies of organisms that have multiple offspring per litter, as do rodents. In 
these study designs, pregnant females (“dams”) are given one or several doses of a 
toxicant, and the fetuses, embryos, or term offspring (“pups”) are examined for signs of 
abnormal development. In such studies, it is usual for the responses of pups in the same 
litter to be more similar to each other than to the responses of pups in different litters 
(“intra-litter correlation”, or “litter-effect”). Another way to describe the same phenomenon 
is that the variance among the proportion of pups affected in litters is greater than would 
be expected if the pups were responding completely independently of each other. 

The models in this section make available two approaches to this feature of 
developmental toxicology studies: they use a probability model that provides for extra 
inter-litter variance of the proportion of pups affected (the beta-binomial probability model: 
see the “Likelihood Function” section below); and they incorporate a litter-specific 
covariate that is expected to account for at least some of the extra inter-litter variance. 
This latter approach was introduced by Rai and Van Ryzin (1985), who reasoned that a 
covariate that took into account the condition of the dam before dosing might explain 
much of the observed litter effect. Those authors suggested that litter size would be an 
appropriate covariate. For the reasoning to apply strictly, the measure of litter size should 
not be affected by treatment; thus, in a study in which dosing begins after implantation, 
the number of implantation sites would seem to be an appropriate measure. On the other 
hand, the number of live fetuses in the litter at term would not be an appropriate measure 
if there is any dose-related prenatal death or resorption (this has apparently been ignored 
in most of the literature). 

Carr and Portier (Carr and Porter, 1991), in a simulation study, warn that in situations in 
which there is no effect of litter size, statistical models that incorporate a litter size 
parameter, as do the models in BMDS, will often erroneously indicate that there is a litter 
size effect. Thus, the user should use litter size parameters with caution. Unfortunately, 
there are currently no good diagnostics for determining whether a litter size effect exists. 

9.7.2 Likelihood Function 

Let g represent the number of dose groups. For the ith group, there are ni pregnant 
females administered dose dosei. In the jth litter of the ith dose group there are sij 
fetuses, xij affected fetuses, and, potentially, a litter-specific covariate rij which will often 
be a measure of potential litter size, such as number of implantation sites, though this is 
not a requirement of the models. In what follows, the dose-response model, which gives 
the probability that a fetus in the jth litter of the ith dose group will be affected is 
represented by 

𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖) 

The beta-binomial distribution can be thought of as resulting from sampling in two stages. 
First, each litter is assigned a probability, Pij from a beta distribution (beta distributions 
represent a two-parameter family of probability distributions defined on the interval (0,1)). 
The parameters of the beta distribution are determined by the administered dose, the 
litter specific covariate rij and the degree of intra-litter correlation, vi . Note that the intra-
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litter correlation parameter varies among doses. It is well known (Williams et al., 1988) 
that when the true intra-litter correlation differs among doses, unbiased estimates of the 
other parameters in a dose-response model can only be obtained if dose-specific intra-
litter correlation parameters are estimated. As a special case, if vi =0, then this part of the 
process is completely deterministic, and 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖) 

This allows for the possibility of no litter effect at all. 

In the second stage of sampling, sij fetuses are assigned to the litter, and the number of 
affected fetuses, xij is sampled from a binomial distribution with parameters Pij and sij . 

The log-likelihood function that results from this process is: 

𝐿𝐿 = ����� ln (𝑝𝑝�𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖� + (𝑘𝑘 − 1)𝛹𝛹𝑖𝑖)

𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘=1

𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝑔𝑔

𝑖𝑖=1

+ � ln�1 − 𝑝𝑝�𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖� + (𝑘𝑘 − 1)𝛹𝛹𝑖𝑖� −� ln (1 + (𝑘𝑘 − 1)𝛹𝛹𝑖𝑖)

𝑠𝑠𝑖𝑖𝑖𝑖

𝑘𝑘=1

𝑠𝑠𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖

𝑘𝑘=1

�� 

 
Where 

𝛹𝛹𝑖𝑖 =
𝜙𝜙𝑖𝑖

(1 − 𝜙𝜙𝑖𝑖)
 

And 

�(∙) = 0
𝑏𝑏

𝑎𝑎

 

 
if a > b by convention. 

9.7.3 Goodness of Fit Information—Litter Data  

The “Litter Data” table provides a listing of the data, expected and observed responses 
and scaled residuals, for each litter.  

The scaled residual values printed in the last column of the table are defined as follows: 

(𝑂𝑂𝑂𝑂𝑂𝑂.− 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)/𝑆𝑆𝑆𝑆 

where “Expected” is the predicted number of responders from the model and SE equals 
the estimated standard error of that predicted number. For these models, the estimated 
standard error is equal to sqrt[n*p*(1-p)*(*𝜙𝜙(n-1)+1)], where  

• n is the sample (litter) size, 
• p is the model-predicted probability of response, and 
• f is the model-predicted intra-litter correlation coefficient. 

The overall model should be called into question if the scaled residual values for several 
individual dose and litter-specific covariate combinations, particularly for the control group 
or a dose group near the BMD and for litter-specific covariate values close to the overall 
mean, are greater than 2 or less than -2. 

The goodness-of-fit p-values are calculated using a bootstrap approach. 
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3. The MLE parameter values are used to generate B pseudo-datasets having the 
same design features (number of doses and number of litters per dose), litter-sizes, 
and, if necessary, litter-specific covariate values, as the original dataset. What varies 
from pseudo-dataset to pseudo-dataset are the number of responding “units” within 
litters, and those are generated, at random, as dictated by the values of the ML 
estimates. 

4. Once the B bootstrap iterations are generated, a statistic referred to as chi-square is 
calculated for each. The chi-square statistic is the sum of the squares of the scaled 
residuals for each litter, as described above. Higher values of that statistic are 
indicative of poorer match between the model predictions and the data.  

Note The chi-square statistic is so called here because, in traditional testing situations, 
that statistic would be approximated by a chi-squared random variable having a 
certain degree of freedom, and its “significance” (p-value) would be determined 
from the appropriate chi-squared distribution function. 

5. The chi-square statistic from the original data is computed and compared to the 
values from the B bootstrap iterations. The p-value is the proportion of chi-square 
values from the iterations that are greater than the original chi-square value.  
 
High p-values are indicative of adequate fit (i.e., there was a high proportion of chi-
square values associated with pseudo-datasets obtained from data known to be 
consistent with the model and the ML estimates of the model parameters). 

That calculation is repeated three times, and various percentiles of the generated chi-
square statistic are presented. This allows the user to determine if enough bootstrap 
iterations (B) have been specified. The default for B is 1000 and should probably not be 
reduced. The user may wish to increase the default if the percentiles for chi-square differ 
markedly across the three runs (in particular, the median and lower percentiles), or if the 
p-values calculated from the three runs differ markedly. This may only be an issue when 
the p-value is close to the value (e.g., 0.05 or 0.10) used as a critical value for deciding if 
the fit of the model to the data is adequate. If there is some variability in the p-values, but 
they are all greater than 0.20, for example, then one probably need not worry about 
increasing the value for B. 

BMD Computation 
BMD computation is similar to that for dichotomous models with the added wrinkle that a 
value for a litter-specific covariate (LSC) may be used, in addition to dose, to describe 
changes in the endpoint. It therefore affects the BMD calculation. If an LSC is included in 
the model, the user can choose to plot results and compute BMDs for one of two specific 
values of the LSC, either the overall mean (across all dose groups) or the control group 
mean. Typically, the overall mean is the preferred choice, but the control group mean 
might be appropriate in certain situations.  

For example, suppose the LSC value varies enough from group to group to be 
“interesting,” but it goes up for some dose groups and down for others in a manner that 
contraindicates a dose effect. In this case, you might decide to use the control group 
mean LSC when the BMD is close to the background dose (i.e., basically deciding that 
the LSC of interest in that region is more likely to be the average observed for the control 
group as opposed to the average across all the groups). If a covariate is found to be 
affected by dose, i.e., if its value appears to have a consistent trend with respect to dose, 
its use is discouraged. 

BMDL Computation 
BMDS currently only calculates one-sided confidence intervals, in accordance with 
current BMD practice. The general approach to computing the confidence limit for the 
BMD (called the BMDL here) is the same for all the models in BMDS, and is based on the 
asymptotic distribution of the likelihood ratio (Crump and Howe, 1985) . 
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The approach used for all the nested dichotomous models is the same. The equations 
that define the benchmark response in terms of the benchmark dose and the dose-
response model are solved for one of the model parameters, using either the control 
group mean or the overall mean of the litter-specific covariate. The resulting expression is 
substituted back into the model equations, with the effect of re-parameterizing the model 
so that BMD appears explicitly as a parameter. A value for BMD is then found such that, 
when the remaining parameters are varied to maximize the likelihood, the resulting log-
likelihood is less than that at the maximum likelihood estimates by exactly 

𝜒𝜒1,1−2𝛼𝛼
2

2
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9.7.4 Nested Dichotomous Frequentist Models 

Table 6. The individual dichotomous nested models used and their respective parameters  

Model Parameters Notes 
Logistic Nested model 

𝑝𝑝(𝑑𝑑) = 𝛼𝛼 +
𝜃𝜃1𝑟𝑟𝑖𝑖𝑖𝑖 + (1 − 𝛼𝛼 − 𝜃𝜃1𝑟𝑟𝑖𝑖𝑖𝑖)

(1 + 𝑒𝑒�−𝛽𝛽−𝜃𝜃2𝑟𝑟𝑖𝑖𝑖𝑖−𝜌𝜌×ln(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)�)
 

if 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 0, and 𝛼𝛼 + 𝜃𝜃1𝑟𝑟𝑖𝑖𝑖𝑖 if 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 
 

𝛼𝛼 = Intercept (≥0) 
𝜌𝜌 = power (≥0, can restrict 
≥1) 
𝛽𝛽 = slope (≥0) 
𝜃𝜃1 = first coefficient for the 
litter specific covariate 
𝜃𝜃2 = first coefficient for the 
litter specific covariate 
𝜙𝜙1, … ,𝜙𝜙𝑔𝑔 = inter-litter 
correlation coefficients 

in the model equation, 𝑟𝑟𝑖𝑖𝑖𝑖 is the litter-specific covariate for the jth litter in the ith dose 
group. In addition, there are g intra-litter correlation coefficients, 0 ≤ 𝜙𝜙𝑖𝑖 ≤ 1 (𝑖𝑖 =
1, … ,𝑔𝑔)1 > 𝛼𝛼 + 𝜌𝜌 ≥ 𝜃𝜃1𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 0 for every 𝑟𝑟𝑖𝑖𝑖𝑖 
If 𝑟𝑟𝑚𝑚 represents either the control mean value for the litter-specific covariate or its 
overall mean, then the BMD is computed as:  

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑒𝑒
�
�ln� 𝐴𝐴

(1−𝐴𝐴)�−𝛽𝛽−𝜃𝜃2𝑟𝑟𝑚𝑚�
𝜌𝜌 �

  
where 

𝐴𝐴 = �
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

(1 − 𝑎𝑎 − 𝜃𝜃1𝑟𝑟𝑚𝑚)  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

For the BMDL, the parameter 𝛽𝛽 is replaced with an expression derived from the 
BMD definition and the BMDL is derived as described in Section 9.7.3. 

 NCTR model 

𝑝𝑝(𝑑𝑑) = 1 − 𝑒𝑒�−(𝛼𝛼+𝜃𝜃1�𝑟𝑟𝑖𝑖𝑖𝑖−𝑟𝑟𝑚𝑚�−(𝛽𝛽=𝜃𝜃2�𝑟𝑟𝑖𝑖𝑖𝑖−𝑟𝑟𝑚𝑚�×𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝜌𝜌�  

𝛼𝛼 = Intercept (≥0) 
𝜌𝜌 = power (≥0, can restrict 
≥1) 
𝛽𝛽 = slope (≥0) 
𝜃𝜃1 = first coefficient for the 
litter specific covariate 
𝜃𝜃2 = first coefficient for the 
litter specific covariate 
𝜙𝜙1, … ,𝜙𝜙𝑔𝑔 = inter-litter 
correlation coefficients 

in the model equation, 𝑟𝑟𝑖𝑖𝑖𝑖 is the litter-specific covariate for the jth litter in the ith dose 
group, 𝑟𝑟𝑚𝑚 is the overall mean for the litter-specific covariate 
𝜃𝜃1(𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑚𝑚) ≥ 0 and 𝜃𝜃2(𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑚𝑚) ≥ 0 
In addition, there are g intra-litter correlation coefficients, 0 ≤ 𝜙𝜙𝑖𝑖 ≤ 1 (𝑖𝑖 =
1, … ,𝑔𝑔)1 > 𝛼𝛼 + 𝜌𝜌 ≥ 𝜃𝜃1𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 0 for every 𝑟𝑟𝑖𝑖𝑖𝑖 

𝐵𝐵𝐵𝐵𝐵𝐵 = �
−(ln(1 − 𝐴𝐴))

(𝛽𝛽 + 𝜃𝜃2𝛿𝛿𝑟𝑟) � × �
1
𝜌𝜌
� 

where 

𝐴𝐴 = �
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

(1 − 𝑎𝑎 − 𝜃𝜃1𝛿𝛿𝑟𝑟)  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

For the BMDL, the parameter 𝛽𝛽 is replaced with an expression derived from the 
BMD definition and the BMDL is derived as described in Section  9.7.3. 
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9.8 Multi-tumor (MS_Combo) Model Description 
The purpose of the MS_Combo program in BMDS is to allow the user to calculate BMDs 
and BMDLs for a combination of tumors (corresponding to a defined risk of getting one or 
more of those tumors) when the individual tumor dose-responses have been modeled 
using a Multistage-Cancer model.  

Thus, the output of an MS_Combo run will present the results of fitting each individual 
tumor (including the BMD and BMDL for that tumor) plus the combined log-likelihood, 
BMD and BMDL for the combination of specified tumor responses.  

In practice, the user should investigate each tumor individually and determine which 
degree of the Multistage-Cancer model is most appropriate for each individual tumor. 
That determination will involve all the usual considerations of fit, AIC, etc.  

Once a specific form of the Multistage-Cancer model is chosen for each of the tumors of 
interest (they need not have the same degree across all the tumors in question), the user 
should specify those choices in the MS_Combo run.  

Note The following descriptions are valid only when the tumors are assumed to be 
independent of one another (conditional on dose level).  

Because of the form of the multistage model, the MLE estimates for the combined risk 
are a function of the parameter values obtained for the individual tumor multistage model 
fits. In fact, the combined probability function has a multistage model form:  

𝑃𝑃(𝑑𝑑) = 1 − 𝑒𝑒{−�𝛽𝛽0+𝛽𝛽1𝑑𝑑+𝛽𝛽2𝑑𝑑2+⋯�} 

and the terms of the combined probability function (𝛽𝛽0,𝛽𝛽1, … ) are specified as follows  

𝛽𝛽0 = �𝛽𝛽0𝑖𝑖 

 

𝛽𝛽1 = �𝛽𝛽1𝑖𝑖 

 

𝛽𝛽2 = �𝛽𝛽2𝑖𝑖 

etc.  

where the sums are over i = 1, …, t, with  

t being the number of tumors under consideration, and  
βxj being the xth parameter (0, 1, …) for tumor j.  

The βxj values are available directly from the Multistage-Cancer runs performed on the 
individual tumors, but MS_Combo performs the calculations for the user, completing the 
summations of the individual terms and computing the BMD based on the combined 
parameter values and the user-specified BMR.  

A profile-likelihood approach is used to derive the BMDL.  

1. Given the BMD and the log-likelihood associated with the MLE solution, a target 
likelihood is defined based on the user-specified confidence level (e.g., 95%).  

2. That target likelihood is derived by computing the percentile of a chi-square (1 degree 
of freedom) corresponding to the confidence level specified by the user (actually, the 
alpha associated with the confidence level, times 2).  

3. That percentile is divided by 2 and subtracted from the maximum log-likelihood.  
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4. That derivation is based on a likelihood ratio test with one degree of freedom; it can 
be shown that estimating the BMDL corresponds to losing one degree of freedom, 
regardless of the number of tumors being combined.  

The BMDL for the combined response (one or more of the tumors of interest) is defined 
as the smallest dose, D, for which the following two conditions are satisfied:  

5. There is a set of parameters such that the combined log-likelihood using D and those 
parameters is greater than or equal to the target likelihood), and  

6. For that set of parameters, the risk at D is equal to the user-specified BMR.  

Note that the combined log-likelihood is a function of the fits of the individual tumors (the 
sum of the individual log-likelihoods), obtained using their tumor-specific β values. Thus, 
the search for the parameters of the combined Multistage-Cancer model varies the 
individual-tumor β values in such a way that the individual log-likelihoods add up to a 
combined likelihood within the range desired (greater than or equal to the target). 
However, to satisfy the second constraint, the sums of the individual-tumor parameters 
(shown above to be the parameters of the combined probability function) are used to 
evaluate the risk for any proposed BMDL, D.  

Note that the individual tumors need not be modeled with the same degree of the 
Multistage-Cancer model. Any terms not included for an individual tumor are assumed to 
be zero (and will remain at zero during BMDL optimization) in the summations shown 
above. The optimizer DONLP2 is used for the combined BMDL estimation. 



 Benchmark Dose Software (BMDS) Version 3.0 
User Guide 

Page 65 of 79 

10.0 Troubleshooting 

10.1 Avoid Using Windows Reserved Characters in File and 
Path Names 
BMDS allows any character, except for Windows reserved characters, to be used when 
naming files or directories that BMDS will access.  

However, the following Windows reserved characters are still disallowed and cannot be 
used: 

< (less than) 

> (greater than) 

| (vertical bar or pipe) 

? (question mark) 

* (asterisk) 

“ (double quote) 

Note The backslash (\) should be used when specifying network drive paths. 

10.2 Request Support with eTicket 
For any technical problem related to running BMDS, please submit a problem report at 
the BMDS eTicket site. With eTicket, you can request help, ask a question, or check on 
the status of an existing issue. 

https://bmds.epa.gov/eticket/
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Appendix A: Version History 
The following sections document new, changed, or updated BMDS features as 
documented in each version’s respective readme file. The information is included here for 
historical and reference purposes. 

A.1 BMDS 1.2 
September 2, 2000 - A new user interface (BMDS0900.exe) was distributed to fix some 
problems with installation of BMDS on certain Windows 98 configurations. If you 
successfully installed BMDS version 1.2 using a previous installation procedure you do 
not need this upgrade. This upgrade merely simplifies the installation process and 
corrects some problems that did not allow BMDS to install to certain computer 
hardware/software configurations. (This version of the software is no longer being made 
available as there are newer versions now available which fix problems that were being 
encountered on newer operating systems.) 

A.2 BMDS 1.2.1 
October 25, 2000 - A new version of BMDS, version 1.2.1, is being distributed at this 
time. This version contains new versions of the continuous Polynomial (version 2.1) and 
Hill (version 2.1) models. If you do not want to completely reinstall BMDS, you can 
download the new model executables and run them separately or under the BMDS 
version 1.2 interface. These new versions of the polynomial and Hill models fix problems 
associated with running the model on Windows NT/2000 operating systems, provide 
improved model fit for certain unique datasets and improve upon the rate of convergence 
on a BMD and BMDL. 

A.3 BMDS 1.3 
March 22, 2001 - Version 1.3 of BMDS is now available! This latest version of BMDS, 
version 1.3, contains new continuous Polynomial (v2.1), Power (v2.1) and Hill (v2.1) 
models, new dichotomous Multistage (v2.1), Weibull (v2.1) and Gamma (v2.2) models, 
and an improved user interface. The new models are more compact and stable (will 
converge on BMD and BMDL solutions more often). The user interface upgrades are 
described in the new help manual (PDF format) for version 1.3 and the readme.txt file 
that is distributed with the upgrade. 

A.4 BMDS 1.3.1 
January 22, 2002 - Version 1.3.1 of BMDS is now available! Version 1.3.1 contains a 
revised help manual and user interface, including a revision to the interface that allows 
the Multistage model to calculate BMD and BMDL values for very low (below E-5) 
benchmark response (BMR) levels. 

November 13, 2002 - A new polynomial model (Version 2.2) is now available that fixes 
the previous incompatibility with Windows 2000. Download it to your main bmds directory 
(same directory as the bmds.exe file). 
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A.5 BMDS 1.3.2 
May 23, 2003 - Version 1.3.2 of BMDS is now available! Version 1.3.2 contains revised 
polynomial (poly.exe) and nested logistic (nlogist.exe) models that are compatible with 
Windows 2000. If you are using a Windows 98 or older operating system, you may need 
to update your msvcrt.dll driver. We suggest that you obtain the latest msvcrt.dll driver 
from Microsoft or download this version of the msvcrt.dll driver and copy it to the 
c:\windows\system directory of your computer (you may have to exit Windows and do this 
in DOS mode). 

A.6 BMDS 1.4.1 
February 5, 2007 - Version 1.4.1 is now available! All models have been recompiled to 
improve speed, stability and compatibility with the latest Windows operating systems. 
Improvements have been made to the model output format for all models. A Multistage-
Cancer model has been added that calculates and reports a cancer slope factor and plots 
the linear extrapolation from the BMDL to the background response estimate per EPA’s 
2005 cancer guidelines. Unlike the Multistage model, the Multistage Cancer model does 
not estimate added risk, nor does it allow beta coefficients to be unrestricted. The 
Quantal-Quadratic model was removed from Dichotomous model choices (note: the user 
can still run this model by specifying the power term of the Weibull model to be 2, but this 
model is not retained in the BMDS dichotomous model listings) 

Issues in the continuous models that caused occasional errors in degrees of freedom 
assignments which impacted continuous model test results have been resolved. 
Acceptance criteria for Tests 2, 3 and 4 was changed from p>=0.05 to p>=0.1 and default 
risk type changed to “Std. Dev.” for all continuous models to be consistent with EPA’s 
draft BMD technical guidance (EPA, 2000). Issues with the Hill model have been fixed, 
including memory problems which were causing some operating systems to crash. 
Parameter standard error estimates and Chi-squared residual calculations in all the 
continuous models were checked and corrected if in error. Model A3 of the continuous 
model testing procedures has been modified so that it always uses the user-specified 
value for the parameter rho, including the constant-variance case where rho = 0. When 
rho = 0, model A3 is the same as model A1, and it is reported explicitly in the constant-
variance runs. As a consequence, all model runs report the entire set of models (A1, A2, 
A3, R and the fitted model) and all four hypothesis tests. 

Issues in the Nested models that caused occasional errors in degrees of freedom 
assignments have been resolved. Memory problems which were causing problems for 
some NCTR model runs have been fixed. 

August 29, 2007 - BMDS Version 1.4.1b has been added to replace version 1.4.1. This 
version contains an update to the BMDS help file. 

November 9, 2007 - BMDS version 1.4.1c is now available. This version updates 
dichotomous models that were already included on BMDS version 1.4.1b. The updates 
primarily improve the handling of parameter specifications, particularly in situations where 
the user may wish to specify the background parameter to be zero. 

A.7 BMDS 2.0 (beta) 
September 28, 2007 - BMDS Version 2.0 beta is now available for inspection and testing 
(NOTE: this is a beta test version, provided only for your examination and testing - BMDS 
1.4.1b should be used for definitive risk assessment calculations). BMDS 2.0 beta 
employs a new graphical user interface and makes it easy to run a number of models for 
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one dataset and compare the results. BMDS 2.0 beta also has a new set of quantal 
models with alternative background parameters (i.e., background additive to dose). We 
welcome comments and suggestions on the functioning of the interface and its new 
features, and on the new models. 

October 10, 2007 - BMDS 2.0 beta - Build 19 released on October 10, 2007 replaces the 
first BMDS 2.0 beta release of September 28, 2007 (Build 13). The new Build 19 has 
important changes and enhancements as a result of additional testing and user exposure 
and should be downloaded and used instead of Build 13. Enhancements include the 
ability to better run a number of the BMD models and also added flexibility and fixes for 
user interface features. Changes include the designation of the new Dichotomous models 
as Alternate Dichotomous to better reflect their production status. Please refer to the 
readme.txt file included with the software installation for more details on the BMDS 2.0 
beta. 

A.8 BMDS 2.0 (final) 
July 10, 2008 - BMDS Version 2.0 final is now available. Released on July 10, 2008, it 
replaces BMDS 1.4.1c as the official BMDS software. BMDS 2.0 is a rewrite of the user 
interface and risk assessment modeling framework, with a markedly improved 
functionality and enhanced multi-model processing capabilities. It uses the same 
underlying source code for the models in BMDS 1.4.1 software, with minor corrections 
and some important additions. For details on the new user interface, go to the BMDS 2.0 
Help menu option in the installed software. BMDS 2.0 also has a new set of quantal 
models with alternative background (i.e., background additive to dose) and asymptote 
(i.e., Hill model) parameters, as well as a Beta Exponential set of models. 

A.9 BMDS 2.1 (beta) 
September 30, 2008 - EPA is making version 2.1 of BMDS available at this time for 
public beta testing. Version 2.1 includes a beta (external peer review) version of a new 
time-dependent toxicodiffusion model for continuous outcomes (Zhu et al., 2005), 
incorporates graphical plots for the continuous exponential models and allows for the use 
of individual animal continuous response data. The BMDS toxicodiffusion model was 
developed by the USEPA National Center for Environmental Assessment (NCEA), 
through partnerships with the USEPA Neurotoxicology Division (NTD) and the University 
of South Florida, to characterize toxic effects (e.g., neurotoxicity) that potentially evolve 
along critical time points. It does this by: 

• modeling a dose-response along a time-course of repeated response measures; and 
• computing benchmark doses and their confidence limits along the time course. 
Documentation for the toxicodiffusion model can also be downloaded. The 
documentation contains a full description of the model, input requirements, model run 
options and sample runs. 

In addition, EPA is distributing an external review (beta) version of a concentration-time 
(CxT) model originally programmed by Wil ten Berge. The EPA ten Berge model 
implements an approach to evaluating the CxT relationships for effects associated with 
chemical exposures. The EPA’s version 1.0 implementation of this model is being 
distributed along with associated documentation and comments on the model received 
from external peer reviewers. EPA plans to respond to external review comments and 
incorporate the ten Berge model into a future version of BMDS. 
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A.10 BMDS 2.1 (Build 52) 
July 30, 2009 - EPA is now distributing the final release of Version 2.1 (Build 52) of the 
Benchmark Dose Software (BMDS). BMDS 2.1 (Build 52) contains user interface 
enhancements as well as several additions/enhancements to the suite of models 
available for modeling dose-response data, including new features for the continuous 
exponential models and a new interface for the ten Berge concentration-time model. For 
details on the changes to the user interface, go to the BMDS 2.1 Help menu option in the 
installed software. The Readme.rtf file distributed with BMDS describes the 
improvements made in version 2.1 (Build 52), installation requirements, and known 
problems. 

The exponential models contained in this version of BMDS have been developed in 
conjunction with the Netherlands’ National Institute for Public Health and the Environment 
(RIVM) to be consistent with the exponential models contained in the RIVM’s PROAST 
software . The US-EPA and RIVM are working together to achieve consistency between 
the BMDS and PROAST software and methods. 

A.11 BMDS 2.1.1 (Build 55) 
November 9, 2009 - EPA is now distributing Version 2.1.1 (Build 55) of the Benchmark 
Dose Software (BMDS). BMDS 2.1.1 (Build 55) contains a flexible new feature that 
allows users to export select BMDS summary report data and plots to Excel. It also 
contains a comprehensive set of sample session and model option files to assist users in 
running batch operations, and several improvements to the ten Berge model that were 
not available in version 2.1. The Readme.rtf file distributed with BMDS provides details 
on the improvements made in Version 2.1.1 (Build 55), installation requirements, and 
known problems.  

A.12 BMDS 2.1.2 (Build 60) 
June 11, 2010 - BMDS 2.1.2 (Build 60) contains user interface enhancements to the 
“Summary Report” feature, new sample session and model option files, and 
improvements to the ten Berge model that were not available in version 2.1.1: 

• BMDS 2.1.2 can access folders or files with embedded space(s) in them. 
Combinations of the path and file name must be less than 256 characters. 

• The default location for searching for certain files (i.e. “Session,” “Option,” “Data,” 
“Plot,” and “Output” files) is now the last location (folder) to which the user saved that 
type of file or from which he accessed that type of file. There is a separate “memory” 
for file location for each of the above-listed file types. 

• Improvements have been made to the “Export to Excel” feature associated with the 
“Summary Report” of a session run.. This feature allows the user to select which 
variables will be exported to Excel by checking/un-checking, in the “Export to Excel” 
column, the boxes corresponding to the variable rows the user wishes to export. The 
plots are exported as well, in a separate Excel “Plots” sheet. 

• Additional session and option files have been added to the “SessionFiles” and 
“OptionFiles” folders. These folders contain sample sessions that allow the user to 
quickly run a specific set of models and model options for a selected dataset. 

• The dichotomous Weibull model can accept a lower bound on power specified by the 
user. The EPA default choice (power restricted to be greater than or equal to 1) can 
still be checked, but if the user wishes not to restrict the power in that way, s/he may 
specify a value greater than or equal to zero; zero was the only other option in 

http://www.rivm.nl/proast
http://www.rivm.nl/proast
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previous versions and that could cause biologically unrealistic fitted curves and 
numerical problems. 

• The Toxicodiffusion model no longer needs the R(D)com Active-X control and will run 
with any version of R, 2.6.2 or later. 

• Plots created by BMDS can be viewed using capabilities within BMDS or using 
GnuPlot. Those two options are accessed under the “Tools” menu item, the “View 
Plot” option. Using GnuPlot, the user can edit the plots to choose colors, fonts, line 
styles, etc. 

• The option screen for the ten Berge CxT (concentration-time) model BMDS 2.1.2 had 
been improved to – address some issues and to allow saving the output file with a 
name of the user’s choosing. More importantly, CxT results from the ten Berge model 
are automatically exported to an Excel template file containing two customizable 
plots, one that shows the contour of concentration and time combinations for a user-
specified probability and a second that shows the probability of response as a 
function of either concentration or time. In both plots, the user specifies the values of 
the other variables in the model. 

Like BMDS 2.1.1, BMDS 2.1.2 contains the following additions/enhancements over 
BMDS 2.0: 

• The ten Berge CxT model alluded to in item 5 above, allows for fitting of dichotomous 
response datasets having two or more explanatory variables (as in acute inhalation 
toxicity experiments). The explanatory variables can be entered as main effects or in 
interaction (cross-product) terms. The user can request the value (and its bounds) of 
one explanatory variable when a response rate is specified (fixing the other 
explanatory variables at some user-specified values) and/or conversely, the value 
(and its bounds) of the response rate, given specification of all explanatory variables. 

• The executable for the set of models known as the exponential models, proposed by 
Dr. Wout Slob of RIVM in The Netherlands has been expanded to allow the 
assumption of log-normally distributed data (the previous versions of the exponential 
models and all other continuous models in BMDS assume that the data are normally 
distributed). The four exponential models fit by BMDS are defined and labeled as 
follows: 
• Model 2: m(dose) = a*exp{sign*b*dose} 
• Model 3: m(dose) = a*exp{sign*(b*dose)d} 
• Model 4: m(dose) = a*(c – (c-1)*exp{-1*b*dose}) 
• Model 5: m(dose) = a*(c – (c-1)*exp{-1*(b*dose)d}) 
where “sign” indicates the direction of change in the responses (sign=+1 for 
increasing responses; sign=-1 for decreasing responses). 

• A version of a new ToxicoDiffusion model for continuous outcomes (Zhu et al., 2005) 
allows for the analysis of repeated-measures data. The BMDS Toxicodiffusion model 
is able to characterize toxic effects (e.g., neurotoxicity) that potentially evolve with 
time points by 
• Modeling a dose-response along a time-course of repeated response 

measurements; 
• Computing benchmark doses and their confidence limits along the time course. 
The ToxicoDiffusion model includes graphical outputs showing the observed and 
model-predicted time-course data, residuals, and a summary of the bootstrap-based 
BMDL calculations.  

For further detail see Zhu, Y., Jia, Z., Wang, W., Gift, J., Moser, V.C., and B.J. Pierre-
Louis (2005), Data Analysis of Neurobehavioral Screening Data: Benchmark Dose 
Estimation. Regulatory Toxicology and Pharmacology, pp 190-201. 
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A.13 BMDS 2.2 (Build 66) 
September 6, 2011 - EPA is now distributing the final release of Version 2.2 (Build 66) of 
the Benchmark Dose Software (BMDS). Key enhancements in BMDS 2.2 (Build 66) 
include: 

• Multiple Tumor Analysis - BMDS 2.2 adds the capability to perform a combined 
analysis of multiple tumors. If the user is willing to assume that those tumors are 
independent and are well described by a multistage-cancer model, then the Multiple 
Tumor Analysis capability (accessed through the File/New or File/Open tool-bar 
choices) allows the user to estimate BMDs and BMDLs for the combined incidence of 
the tumors in question (i.e., BMDs and BMDLs for the likelihood of getting one or 
more of those tumors). 

• Trend Test for Dichotomous Data - Another major addition is the new capability to 
perform a trend test on dichotomous datasets. This is the first in a series of trend test 
to be added to BMDS (future versions will also include trend test for continuous and 
nested data). The trend testing feature can be found on the dataset screens, 
accessible once a dataset has been identified by the user as containing dichotomous 
response data. The test performed is the Cochran-Armitage trend test described by 
Haseman (1984). 

• The Dichotomous Hill model has been modified - Changes to the parameter 
initialization section of the Dichotomous Hill code have improved the convergence 
features of this model. 

• Automatic Transfer of Variable Name Changes to Other Option Files in a 
Session - When working within a session, variable name changes (e.g., for dose, 
sample size, response, mean, or standard deviation variables) made in one option 
file (i.e., for one model) can be “transferred” to other option files included in that 
session (i.e., those for other models). The user will be prompted to determine if 
variable name assignment changes made in one option file should be made in all 
other option files included in that session. Thus, users can change variable name 
assignments once in a session, without having to make those changes separately in 
every option file. 

• Default Column Headers for New Datasets - Note also that newly created 
dichotomous, continuous or nested model data files will start with default column 
headers, in a particular order, as appropriate for the type of data (e.g., Dose, N, and 
Effect for dichotomous datasets; Dose, N, Mean, and Std for summarized continuous 
datasets). The user may change those default headers, but will be warned that doing 
so may affect the running of BMDS-supplied sessions that look for those default 
names. 

A.14 BMDS 2.2 (Build 67) 
December 8, 2011 - EPA is now distributing BMDS 2.2 (Build 67), which include minor 
modifications to the user interface. 

A.15 BMDS 2.3 (Build 68) 
September 12, 2012 - BMDS 2.3 introduces more flexible error-trapping functionality, 
enabling users to store essential comments, documentation, notations, etc. on their data 
in the datasets and spreadsheets without triggering a data validation error.  

Previously, BMDS ran validation checks on the dataset each time the file was opened. 
BMDS would interpret notes, comments, extraneous text, etc. contained in the dataset as 
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data errors and would not open the file. This would require opening the file in a separate 
program and purging any comments or text. 

In BMDS 2.3, the application instead checks for data errors when the data is sent to the 
model. BMDS bases its validation on the dataset’s column assignments from the Option 
Screen.  

After you open the dataset, select the Model and Model Type, and then select Proceed, 
the Option Screen displays. In the Column Assignments section of the Option Screen, 
specify the data labels corresponding to the dataset variables. 
When you click Run, BMDS will validate and error-check the data for only those assigned 
columns. BMDS will then display a message box describing any errors related to invalid 
values or blank cells found in those columns.  

BMDS will also flag any duplicate column headers if they conflict with the Column 
Assignments specifications. Note that BMDS is case-sensitive, so BMDS considers dose, 
Dose, and DOSE to be separate variable names. 

BMDS 2.3 also features the following fixes and enhancements: 

• Fixes a problem reported by users of Microsoft Office in Windows 7, in which 
clipboard errors would crash both BMDS and Microsoft Office. 

• Warns the user when saving a file using a name that exceeds the Windows limit of 
256 characters. To correct the problem, rename the file or move the file to a directory 
higher in the hierarchy.  

• Enhances Option screen validation to provide more thorough parameter constraint 
checking and to display pop-up messages describing errors. 

• Fixes bug that prevented BMDS from adding a new/existing dataset to the Session 
Grid. 

• Fixes bug related to dynamically drawn dialog boxes. 
• An issue was discovered in the computation of the A3 model log-likelihood for the 

continuous models when the user specified the variance parameter alpha. While this 
issue is being investigated and resolved, the option to specify alpha has been 
disabled for those models. 

• Fixes intermittent bug where occasionally, when running the exponential model, 
BMDS failed to display a summary graph and report, even when output files were 
produced. 

• Edits and updates to several Help topics: 
• Updated all Model Description topics to reflect upper parameter limit of 18 for 

some models. 
• Added the following topics under “Other Data or Analysis Types”: Data With 

Negative Means, Test for Combining Two Datasets for the Same Endpoint 
• Added the following Troubleshooting topics: Help File Does Not Display, Decimal 

Separator Should Be a Period (see Section 3, “Usage Tips,” in this file for more 
information) 

• Added description of multi-tumor model (.d) file to the Multiple Tumor Analysis 
topic. 

• Added text to the Dichotomous Hill and Logistic models descriptions to address 
occasional error messages that appear for these models. 

• Under the “Graphic Output from Models” topic, added the subtopic “Error Bar 
Calculations,” explaining how BMDS generates error bars for various model 
types. 
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A.16 BMDS 2.3.1 (Build 69) 
September 28, 2012 - BMDS maintenance release Version 2.3.1 (Build 69) replaces 
Version 2.3 (Build 68). It simplifies how data validation errors for certain models are 
reported to the user. BMDS 2.3 also introduced user interface improvements.  

None of the actual dose-response models in BMDS were modified for versions 2.3 and 
2.3.1. 

A.17 BMDS 2.4 (Build 70) 
BMDS 2.4 includes several enhancements to improve usability and ensure accurate and 
reliable results, such as more informative plot titles and the ability to change an option file 
on the fly within a session. The help file includes a new section on “BMDS Best 
Practices” containing valuable information and guidance on such topics as optimization 
criteria, alternative models, re-initializing parameters, and lognormal response option, 
among others. 

Also, in this release, the BMDS install package includes ICF International’s BMDS 
Wizard, an Excel-based tool that facilitates the preparation and organization of, and 
enhances the reporting capabilities of, BMDS modeling sessions.  

BMDS 2.4 adds the following new or enhanced functionality: 

• BMDS plots now provide more informative titles, such as “Weibull Model, with BMR 
of 10% Extra Risk and 0.95 Lower Confidence Limit for the BMD (BMDL).”  

• BMDS now includes the cancer slope factor for the MS_Combo output.  
• When an option file is modified via the Session Grid and saved under a new name, 

BMDS now automatically links that file to the current session. 
• In a modeling session, after changes are made to a model option file, BMDS lists the 

changes for the user and asks whether they should be applied to the other model 
option files in the session. A warning is given to remind the user that changes to 
option files will affect other sessions that use those option files. 

BMDS 2.4 also features the following fixes or changes: 

• Gnuplot files now remain on the screen until the user closes them.  
• Fixes a problem where exporting rows to Excel would shift column values to different 

headers on the Dichotomous Format and Continuous Format worksheets.  
• Fixes a problem where BMDS dichotomous models treated “%Positive” as Incidence 

data.  
• Fixes a problem where cut and paste operations on session data fields worked 

erratically on Windows 7 systems.  
• Fixes a problem where BMDS could not open datasets saved with a capital .DAX 

extension.  
• Fixes a problem where selecting a column in the data grid for a Log10 transformation 

returned incorrect results.  
• Removes “Exact” as an available solution in the exponential model for summary data.  
• Removes the “Extra” option for all continuous models but Hill.  
• Removes the Optimization section from the options screens for all models that are 

not affected by optimization settings.  
• Changes the default model iterations for all models from 250 to 500. 
• Harmonizes the output for all continuous models so that when the “Rel Dev.” BMR 

type is selected in the option screen, the “Risk Type” reported in the output file says 
“Relative deviation” rather than “Relative risk.”  
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• Fixes a problem in the Multi-tumor Model (ms_combo) where BMDS failed to return a 
valid combined BMDL if the largest dose in the first dataset listed in the tumor 
analysis was less than the maximum dose in the other tumor analysis datasets. 

• Edits and updates several Help topics, including: 
• A new section, “BMDS Best Practices for Obtaining Optimal Model Convergence.”  
• A new topic under Troubleshooting: “Avoid using special characters in filenames.” 
• A new topic documenting the model files (with their version numbers) used in BMDS 

2.4. 
• A new appendix for BMDS version history information that originally appeared in 

those versions’ readme files. 
• A new note on log transformations for the topic “Data Transformation Types.” 
ICF INTERNATIONAL’S BMDS WIZARD 
The BMDS 2.4 install package includes ICF International’s BMDS Wizard, an Excel-
based tool that facilitates the preparation and organization of and enhances the reporting 
capabilities of BMDS modeling sessions. This install includes multiple copies of the ICF 
BMDS Wizard files that are preformatted for continuous, dichotomous, and dichotomous-
cancer datasets. 

BMDS “power users” employ ICF BMDS Wizard as a shell to simplify the BMD modeling 
process by streamlining data entry, model selection, option file development, output file 
reporting, and model comparisons.  

ICF BMDS Wizard 1.7 can also export Microsoft Word-formatted reports that employ the 
latest EPA-approved reporting format (as of February 15, 2013). It can only export 
reports for continuous, dichotomous, and dichotomous-cancer models.  

To run the ICF BMDS Wizard, go to the BMDS 2.4 program directory and locate the 
“BMDS Wizard 1.7” subdirectory. ICF has included a readme and quickstart guide to the 
software. Please refer to that documentation for details on running the tool. 

More information on the ICF BMDS Wizard can be found at ICF’s site: 
http://www.icfi.com/insights/products-and-tools/bmds-wizard.  

Please note that ICF BMDS Wizard is not endorsed or approved by EPA. Please contact 
ICF International at wizard@icfi.com for support.  

A.18 BMDS 2.5 (Build 82) 
BMDS 2.5 provides updates to ICF International’s BMDS Wizard, which includes support 
for 32-bit and 64-bit versions of Microsoft Office on Windows 7, as well as a new 
MS_Combo (multi-tumor) template. 

In addition, BMDS 2.5 contains various improvements to model stability and reliability. 

Resolved Issues 
BMDS 2.5 features the following enhancement and fixes: 

• The BMDS Tools>View Plot menu entry has been simplified to make it easier to 
generate a plot from a previously created .plt file. 

• The Multistage, Multistage Cancer and MS_Combo models now provide accurate 
results when non-integer input data values for Incidence and Number of Subjects 
used. 

• The Multistage, Multistage Cancer and MS_Combo models now work correctly when 
beta parameters are specified by the user. Previously, the models would fail to 
calculate BMDL. 

http://www.icfi.com/insights/products-and-tools/bmds-wizard
mailto:wizard@icfi.com
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• The Power model now honors the direction of adversity specified by the user. 
Previously, the model always determined the direction automatically. 

• An intermittent crash in the MS_Combo model has been resolved. 
• Several Help topics have been revised, including: 
• Specified in the Troubleshooting section that path+filenames should not exceed 127 

characters. 
• Added a topic documenting the MS_Combo model input file. 
• Added Appendix B, which documents, for each model options screen, all of that 

screen’s fields, including any field constraints. 
• Updated the following topics to reflect BMDS .out files content: Continuous Model 

Text Output, Continuous Model Maximum Likelihood, Tests of Fit. 

A.19 BMDS 2.6 
BMDS 2.6 includes several enhancements to improve usability and ensure accurate and 
reliable results.  

BMDS 2.6 also introduces a significant new feature: the ability for BMDS to automatically 
detect and, optionally, install software updates. This feature will ensure BMDS users 
have access to the latest version of the software with up-to-date fixes and 
enhancements.  

The BMDS install package includes ICF International’s BMDS Wizard, an Excel-based 
tool that facilitates the preparation and organization of, and enhances the reporting 
capabilities of, BMDS modeling sessions. See the next section on the ICF BMDS Wizard 
for more information. 

BMDS 2.6 features the following enhancement and fixes: 

• Resolved the following issues related to the nested models (NLogistic, NCTR, and 
Rai and van Ryzin): 
• The approach to evaluating goodness-of-fit for the nested models has been 

changed. Now, a bootstrap-based approach (using the fitted model and the 
underlying beta-binomial distribution of the observations) is used to evaluate the 
lack of fit. This obviates the need to group the litter-specific observations across 
litters and avoids asymptotic approximations. 

• Fixed a calculation error that occurred when the litter-size covariate (LSC) was 
larger than the litter size. (Although the reliability of the Rai and van Ryzin model 
has been improved, there is a remaining issue where the model erroneously 
reports the same value for the BMD and BMDL under certain circumstances.) 

• Added scaled residual of interest calculations to the results report. Output 
includes min, average, and max scaled residual of interest, and number of litters 
used for the calculation. 

• BMDS now handles file and path names more robustly across all models. Specific 
changes include: 
• Full path length (folder plus file name) is now 255 characters rather than 127. 
• Spaces and ampersands (&) are now permitted.  
• Fixed several issues that occurred when the user specified output and session 

names in some models.  
• BMDS now supports UNC (network) path names structured as 

\\ComputerName\ShareName\Path (e.g., 
\\FileSrv1\Users\JDoe\USEPA\BMDS260). The total number of characters 
cannot exceed 255.  
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• The ToxicoDiffusion and MS_Combo models are now out of “beta” status. Detailed 
technical documentation of these models can be viewed or downloaded from the 
BMDS Download page. 

• The ToxicoDiffusion model can now run when R has been installed on a per-user 
basis.  

• Resolved an issue with the Linear and Polynomial models where incorrect MLE’s 
were produced for non-constant variance in some situations.  

• Resolved an issue so that BMDS now correctly calculates and displays Standard 
Error Estimates for all models in the “Parameter Estimates” table, whereas previously 
most models displayed “*”. 

• Changed the color scheme for BMDS plots so they are easier to read. 
• Included the most recent version of gnuplot (version 4.6.3). 
• Fixed the Export to Excel function so it can export results for sessions containing any 

number of models. (Previously, sessions containing more than 24 models produced 
an error during export.) 

• Fixed an issue so that BMDS now supports regional settings for the decimal 
separator in the user interface and in spreadsheets created by the Export to Excel 
function. However: 
• Files generated by BMDS (such as the .out files and .d files) will still show “.” as 

the decimal.  
• No “thousands separator” (regardless of regional setting) can be used in the 

data; that is, one thousand can only be written as 1000 rather than as 1,000. 
• Added the following items to the summary table in the BMDS user interface: “Scaled 

Residual for Control Group” and “Scaled Residual for Dose Group Nearest the BMD”. 
The relevant values are already printed out in the “Goodness of Fit” table. 

• Improved the e-Ticket system for users to request support and guidance.  
• Fixed an issue in the Power model where the specified power parameter output value 

was displayed incorrectly in the output text. 
• Fixed an error in the restricted linear model when variance is non-constant. 
• Fixed the alpha parameter initialization feature in the model options screen.  
• New data grid windows now default to display 1000 rows. The previous default was 

100. 
• In addition to minor changes to accommodate the fixes and enhancements described 

above, the following Help file topics have been significantly revised or added: 
• Added: Troubleshooting>No Thousands Separator Can Be Used in the Data 
• Added: Troubleshooting>Requesting Support using eTicket 
• Added: Using BMDS 2.6.0>Keeping BMDS Up to Date 
• Added: Model Descriptions>Multi-tumor (MS_Combo) Model Description 
• Added a note to the Output From Models>Text Output from 

Models>Dichotomous Model Text Output topic, describing how standard error 
methods are calculated for parameters for multistage models vs. other 
dichotomous models. Also added text to the Continuous Model Text Output and 
Nested Model Text Output topics describing how their parameter standard errors 
are obtained. 

• Revised text on standard error calculations for the continuous model topics. 
• Updated the Model Descriptions>Nested Model Descriptions topic to describe 

how the goodness-of-fit p-values are calculated using a bootstrap approach. The 
Nested Model Description subtopics also include revised formula descriptions.  

• Updated the topic “Models Included in BMDS 2.6.0” to reflect updated versioning 
information. 

• Updated several topics in “Appendix A: Model Input File Format Descriptions” to 
reflect user interface changes. Also added input file details for the Dichotomous 
Hill and Quantal with Background Dose models. 
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• Updated several topics in “Appendix B: Model Options Screen Fields Reference” 
to reflect user interface changes. 

A.20 BMDS 2.6.0.1 
 BMDS 2.6.0.1 contains the following fixes and enhancements: 

• Resolves an issue in BMDS 2.6 that prevented users from specifying parameter 
values for Continuous models. (BMDS still prevents users from specifying the 
Continuous model Alpha parameter to work around an open issue where BMDS 
sometimes reports a non-optimal A3 log likelihood when the Alpha parameter is 
specified.)  

• Resolves an issue with previous versions where BMDS occasionally reported 
incorrect scaled residuals when a session referenced multiple data files with differing 
dose values.  

• Enhances the Nested models’ text results to display the minimum, maximum, and 
mean of the absolute value of the scaled residuals, as well as the minimum, 
maximum, and mean of the scaled residuals.  

• Resolves an issue where BMDS 2.6 could not display plots generated by previous 
BMDS versions.  

• Implements a fix for an intermittent issue where the BMDS Wizard did not import 
plots generated by BMDS 2.4 and later.  

• Correctly validates the v parameter for the Continuous Hill model, an issue since 
BMDS 2.3. Although the v parameter must be 0 < v ≤1 for Dichotomous Hill, it should 
be unconstrained for the Continuous Hill model.  

• Adds an Update button to the About BMDS box (accessible from the Help>About 
menu item). Click the Update button to have BMDS check for and optionally install a 
BMDS update. 

A.21 BMDS 2.7 
August 18, 2017 - EPA distributed BMDS 2.7, which features several enhancements and 
fixes, including: 

• The benchmark dose upper confidence limit (BMDU) is now included with the BMDL 
for most BMDS models (primarily continuous and dichotomous). 

• BMDS installation now uses a Windows Installer msi-based file, rather than the zip 
files of previous releases. The .msi-based release is simpler, more robust, and 
minimizes problems related to Windows 10’s increased security protocols. 

• The auto-update feature (introduced in BMDS 2.6) works in a wider range of 
connection scenarios so users can be assured they are running the most recent 
version. 

The Excel-based BMDS Wizard v1.11 is also included as part of the install package. 
BMDS Wizard remains unchanged except for minor fixes needed for compatibility with 
BMDS v2.7. 

See the BMDS 2.7 readme file for details on this version’s enhancements and fixes. 
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Appendix B: Citation Format and Acknowledgements 
Citation Format 
U.S. EPA (Environmental Protection Agency), 2018.  Benchmark Dose Software (BMDS) 
Version 3.0.  National Center for Environmental Assessment.  Available from: 
https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-30-download 
(Accessed mm/dd/yyyy).  

Sponsors 
EPA’s National Center for Environmental Assessment with technical support from EPA’s 
National Health & Environmental Effects Research Laboratory. 

Contractor 
General Dynamics Information Technology (GDIT)—BMDS user interface with a risk 
assessment modeling framework 

Credits 

• Dr. Matthew W. Wheeler, of The National Institute for Occupational Safety and Health 
(NIOSH), programmed both the continuous and dichotomous models for BMDS 3.0. 
His involvement consisted of rewriting all the models. This new code base allows for 
model averaging and future extensions to the BMDS modeling platform. He also 
developed the theory that allows the fast Bayesian computation of the model 
averaging results. 

• RIVM (National Institute for Public Health and the Environment of the Netherlands, 
part of the Dutch administration), is a recognized leading center of expertise in the 
fields of health, nutrition, medicines, consumer safety and environmental protection 
working mainly for the Dutch government. RIVM is not a part of the US 
Environmental Protection Agency, but has given US EPA a non-exclusive, limited 
and revocable permission to use its logo only in recognition of RIVM’s contribution to 
the development of certain BMDS models. The use of this logo here is neither an 
endorsement nor an advertisement for RIVM. RIVM does not accept any 
responsibility or liability for the activities of—or failures to act by—US Environmental 
Protection Agency. 

We gratefully acknowledge the following software used in BMDS: 
• Microsoft Excel 2016 
• R 

 Note 
Obtain the latest version of this program from the EPA BMDS web site.  The features and 
models in the BMDS program that are downloadable from this web site have received at 
least an internal EPA review. 

Disclaimer 
This software has been reviewed in accordance with U.S. Environmental Protection 
Agency policy and approved for use. Mention of trade names or commercial products 
does not constitute endorsement. 

https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-30-download
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